3,439
Views
10
CrossRef citations to date
0
Altmetric
Climate Change in the Neotropics

Potential impacts to dry forest species distribution under two climate change scenarios in southern Ecuador

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 18-29 | Received 26 Oct 2015, Accepted 01 Nov 2016, Published online: 09 Jan 2017

References

  • Pearson R, Dawson T. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr. 2003;12:361–371.10.1046/j.1466-822X.2003.00042.x
  • McCarty J. Ecological consequences of recent climate change. Conserv Biol. 2001;15:320–331.10.1046/j.1523-1739.2001.015002320.x
  • Walther G-R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395.10.1038/416389a
  • Van-der-Putten W, Macel M, Visser M. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B Biol Sci. 2010;365:2025–2034.10.1098/rstb.2010.0037
  • Hannah L, Betts A, Shugart H. Modeling future effects of climated change on tropical forest. In: Bush M, Flenley J, Gosling W, editors. Tropical rainforest responses to climatic change. 2nd ed. Berlin (Al); 2011. p. 411–429.10.1007/978-3-642-05383-2
  • Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.10.1038/nature01286
  • Ramirez-Villegas J, Cuesta F, Devenish C, et al. Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J Nat Conserv. 2014;22:391–404.10.1016/j.jnc.2014.03.007
  • Rodrigues P, Silva J, Eisenlohr P, et al. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests. Braz J Biol. 2015;75:679–684.10.1590/1519-6984.20913
  • Enquist C. Predicted regional impacts of climate change on the geographical distribution and diversity of tropical forests in Costa Rica. J Biogeogr. 2002;29:519–534.10.1046/j.1365-2699.2002.00695.x
  • Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 2005;8:993–1009.10.1111/ele.2005.8.issue-9
  • Austin M. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Modell. 2007;200:1–19.10.1016/j.ecolmodel.2006.07.005
  • Franklin J. Mapping species distributions: Spacial inference and prediction; Cambridge University Press; 2013. 320 p.
  • Colwell R, Brehm G, Cardelús C, et al. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science. 2009;322:258–261.
  • Bush M, Hooghiemstra H. Tropical biotic responses to climate change. In: Lovejoy T, Lee H, editors. Climate change and biodiversity. Michigan (MI): Yale University; 2005. p. 125–141.
  • Pearson R. Climate change and the migration capacity of species. Trends Ecol Evol. 2006;21:111–113.10.1016/j.tree.2005.11.022
  • Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst. 2006;37:637–669.
  • Pennington R, Prado D, Pendry C. Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr. 2000;27:261–273.10.1046/j.1365-2699.2000.00397.x
  • Aguirre Z, Kvist L. Floristic composition and conservation status of the dry forests of south-western Ecuador. Lyonia. 2005;8:41–67.
  • Albuja L. Biodiversity of the inter-Andean dry valleys of the Ecuador. In: Albuja L, editor. Escuela Politecnica Nacional. Quito; 2011. 56 p.
  • Aguirre Z, Kvist L. Composición florística y estructura de bosques estacionalmente secos en el sur-occidental de Ecuador, provincia de Loja, municipios de Macara y Zapotillo. Arnaldoa. 2009;16:87–99.
  • Aguirre Z, Kvist L, Sanchez O. Bosques Secos del Ecuador y su diversidad. Bot Econ los Andes Cent. 2006;162–87.
  • Linares-Palomino R, Kvist L, Aguirre-Mendoza Z, et al. Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests. Biodivers Conserv. 2010;19:169–185.10.1007/s10531-009-9713-4
  • Jara-Guerrero A, De la Cruz M, Méndez M. Seed dispersal spectrum of woody species in south Ecuadorian dry forests: environmental correlates and the effect of considering species abundance. Biotropica. 2011;43:722–730.10.1111/btp.2011.43.issue-6
  • Thuiller W, Albert C, Araújo M, et al. Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst. 2008;9:137–152.10.1016/j.ppees.2007.09.004
  • Herbario-Loja. Zoning and determination of the types of dry forest in the southwest of the province of Loja. Universidad Nacional de Loja. 2001:144 p.
  • Lozano P. Types of forest in the south of Ecuador. In: Aguirre Z, Madsen M, Cotton E, Balslev H, editors. Austroecuatoriana Botany: Studies on plant resources in the provinces of El Oro, Loja and Zamora- Chinchipe. Universidad Nacional de Loja. Loja; 2002. p. 29–49.
  • Curtis J, McIntosh R. The interrelations of certain analytic and synthetic phytosociological characters. Ecol Soc Am. 1950;31:434–455.
  • Mostacedo B, Fredericksen T. Manual de métodos básicos de muestreo y análisis en ecología vegetal. Proyecto de Manejo Forestal Sostenible (BOLFOR). Santa Cruz; 1999.
  • Magurran AE, McGill BJ. Biological diversity: frontiers in measurement and assessment [Internet]. OUP Oxford; 2011. Available from: http://books.google.co.cr/books?id=Q5oURmsTv4wC
  • IPCC. Climate Change and Biodiversity. Gineva, Switzerland; 2002. 89 p.
  • Phillips SJ, Robert A, Robert S. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190:231–259.10.1016/j.ecolmodel.2005.03.026
  • Riahi K, Rao S, Krey V, et al. RCP 8.5 – a scenario of comparatively high greenhouse gas emissions. Clim Change. 2011;109:33–57.10.1007/s10584-011-0149-y
  • van Vuuren D, Edmonds J, Kainuma M, et al. The representative concentration pathways: an overview. Clim Change [Internet]; 2011 Aug 5 [cited 2014 Jul 10];109:5–31. Available from: http://link.springer.com/10.1007/s10584-011-0148-z
  • Wayne GP. The beginners’s guide to representative concentration pathways. Skeptical Science; 2013.
  • IPCC. Climate change 2013. The physical science basis. Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change; 2013. 1535 p.
  • Sillmann J, Kharin K, Zwiers F, et al. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos. 2013;118:2473–2493.10.1002/jgrd.50188
  • Armenta G, Dorado J, Rodriguez A, et al. Escenarios de Cambio Climático para Precipitación y Temperaturas en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia Bogota, Colombia. IDEAM:274; 2014.
  • Kharin V, Zwiers F. Climate predictions with multimodel ensembles. J Clim. 2002;15:793–799.10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2
  • Knutti R, Furrer R, Tebaldi C, et al. Challenges in combining projections from multiple climate models. J Clim. 2010;23:2739–2758.10.1175/2009JCLI3361.1
  • Knutti R, Sedláček J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change. 2012;3:1–5.
  • Eguiguren P, Maita J, Aguirre N, et al. Tropical ecosystems vulnerability to climate change in southern Ecuador. Tripical Conserv Sci. 2016:1–17.
  • Lambert S, Boer G. CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn. 2001;17:83–106.10.1007/PL00013736
  • Graham C, Loiselle B, Velásquez-Tibatá J, et al. Models of Species Distribution and the Challenge of Forecasting Future Distributions. In: Herzog S, Martinez R, Jorgensen P, Tiessen H, editors. Climate Change and Biodiversity in the Tropical Andes, Instituto Interamericano para la investigación del Cambio global (IAI), São José dos Campos, y Comité Científico sobre Problemas del Medio Ambiente (SCOPE). Paris; 2009. p. 349–368.
  • Rissler L, Apodaca J. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol. 2007;56:924–942.10.1080/10635150701703063
  • IPCC. IPCC 5th assessment report “climate change 2013: the physical science basis.”. Stockholm; 2013.
  • IPCC. Climate change 2001. Impacts, adaptation and vulnerability. Parte de la contribución del Grupo de trabajo II al Tercer Informe de Evaluación Grupo Intergubernamental de Expertos sobre el Cambio Climático. Ginebra: Grupo Intergubernamental de Expertos sobre el Cambio Climático; 2001. 93 p.
  • Adger N, Arnella N, Tompkins E. Successful adaptation to climate change across scales. Glob Environ Change. 2005;15:77–86.10.1016/j.gloenvcha.2004.12.005
  • Liu X, Wang Y, Peng J, et al. Assessing vulnerability to drought based on exposure, sensitivity and adaptive capacity: a case study in middle Inner Mongolia of China. Chin Geogr Sci. 2013;23:13–25.10.1007/s11769-012-0583-4
  • Brewer C, Pickle L. Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann Assoc Am Geogr. 2002;92:662–681.10.1111/1467-8306.00310
  • Saaty T. Decision making with the analytic hierarchy process Thomas L. Saaty. Int J Serv Sci. 2008;1:83–98.
  • Saaty T. How to make a decision: the analytic hierarchy process. Eur J Oper Res. 1990;48:9–26.10.1016/0377-2217(90)90057-I
  • Aguirre Z, Betancourt-Figueras Y, Greada L. Natural regeneration in the dry forests of the province of Loja and useful for local management. Rev CEDAMAZ. 2013;3:54–65.
  • Jackson ST, Betancourt JL, Booth RK, et al. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc Nat Acad Sci. 2009;106:19685–19692.10.1073/pnas.0901644106
  • Aguirre N, Eguiguren P, Maita J, et al. Vulnerability to climate change in the Southern Region of Ecuador: Potential impacts on ecosystems, biomass production and water production. Universidad Nacional de Loja. Loja; 2015. 184 p.
  • Araújo MB, Guilhaumon F, Neto DR, et al. Impacts, vulnerability and adaptation to climate change of Spanish biodiversity 2. vertebrate fauna; Madrid, Spain; 2011. p. 640.
  • Pimm S, Jenkins C, Abell R, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344:987–999.
  • Pliscoff P, Fuentes-Castillo T. Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Rev Geogr Norte Gd. 2011;79:61–79.10.4067/S0718-34022011000100005
  • Vos CC, Berry P, Opdam P, et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol. 2008;45:1722–1731.
  • Coetzee BWT, Robertson MP, Erasmus BFN, et al. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob Ecol Biogeogr. 2009;18:701–710.
  • Walther G-R. Plants in a warmer world. Perspect Plant Ecol Evol Syst Urban Fischer Verlag. 2003;6:169–185.10.1078/1433-8319-00076
  • Alberto F, Aitken S, Alía R, et al. Potential for evolutionary responses to climate change – evidence from tree populations. Glob Chang Biol. 2013;19:1645–1661.10.1111/gcb.12181
  • Cuesta-Camacho F, Peralvo M, Ganzenmuller A, et al. Identification of gaps and conservation priorities for terrestrial biodiversity in the Continental Ecuador. EcoCiencia, The Nature Conservancy, Conservación Internacional, Ministerio del Ambiente del Ecuador; 2006. Quito, Ecuador. p. 58.
  • Jorgensen P, León Yánez S. Catalogue of the vascular plants of Ecuador. Monographs in systematic botany from the Missouri botanical garden; 1999. p. 1181.