5,275
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Land use impacts poison frog chemical defenses through changes in leaf litter ant communities

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 75-87 | Received 02 Sep 2019, Accepted 10 Mar 2020, Published online: 12 Apr 2020

References

  • Estes JA, Terborgh J, Brashares JS, et al. Trophic downgrading of planet Earth. Science. 2011;333(6040):301–306.
  • Fischer J, Lindenmayer DB. Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr. 2007;16(3):265–280.
  • Valladares G, Salvo A, Cagnolo L. Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol. 2006;20:212–217.
  • Melian CJ, Bascompte J. Food web structure and habitat loss. Ecol Lett. 2002;5(1):37–46.
  • Laliberté E, Wells JA, Declerck F, et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol Lett. 2010;13:76–86.
  • Kurz DJ, Justin Nowakowski A, Tingley MW, et al. Forest-land use complementarity modifies community structure of a tropical herpetofauna. Biol Conserv. 2014;170:246–255.
  • Andersen AN, Majer JD. Ants show the way down under: invertebrates as bioindicators in land management. Front Ecol Environ. 2004;291. DOI:https://doi.org/10.2307/3868404
  • Cagnolo L, Valladares G, Salvo A, et al. Habitat fragmentation and species loss across three interacting trophic levels: effects of life-history and food-web traits. Conserv Biol. 2009;23(5):1167–1175.
  • Saporito RA, Spande TF, Martin Garraffo H, et al. Arthropod alkaloids in poison frogs: a review of the ‘dietary hypothesis’. Heterocycles. 2009;79(1):277.
  • Dumbacher JP, Wako A, Derrickson SR, et al. Melyrid beetles (Choresine): a putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds. Proc Natl Acad Sci U S A. 2004;101(45):15857–15860.
  • Ananthakrishnan TN. Insects and plant defence dynamics. Science Pub Incorporated; 2001. Enfield, USA.
  • Santos JC, Tarvin RD, O’Connell LA. A review of chemical defense in poison frogs (Dendrobatidae): ecology, pharmacokinetics, and autoresistance. Chem Sign Vertebrates. 2016;13:305–337.
  • Hovey KJ, Seiter EM, Johnson EE, et al. Sequestered alkaloid defenses in the dendrobatid poison frog oophaga pumilio provide variable protection from microbial pathogens. J Chem Ecol. 2018;44(3):312–325.
  • Bolton SK, Dickerson K, Saporito RA. Variable alkaloid defenses in the dendrobatid poison frog oophaga pumilio are perceived as differences in palatability to arthropods. J Chem Ecol. 2017;43(3):273–289.
  • Santos JC, Coloma LA, Cannatella DC. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc Natl Acad Sci U S A. 2003;100(22):12792–12797.
  • Saporito RA, Donnelly MA, Jain P, et al. Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon. 2007;50(6):757–778.
  • McGugan JR, Byrd GD, Roland AB, et al. Ant and mite diversity drives toxin variation in the Little Devil poison frog. 2016;42:537–551 DOI:https://doi.org/10.1101/031849
  • Cárdenas RE, Donoso DA, Argoti A, et al. Functional consequences of realistic extinction scenarios in Amazonian soil food webs. Ecosphere. 2017;8(2):e01692.
  • Philpott SM, Perfecto I, Armbrecht I, et al. Ant diversity and function in disturbed and changing habitats. Ant Ecol. 2009;137–156. DOI:https://doi.org/10.1093/acprof:oso/9780199544639.003.0008
  • Gibb H, Sanders NJ, Dunn RR, et al. Habitat disturbance selects against both small and large species across varying climates. Ecography. 2018;41(7):1184–1193.
  • Andersen AN, Rodriguez-Cabal M. Responses of ant communities to disturbance: five principles for understanding the disturbance dynamics of a globally dominant faunal group. J Anim Ecol. 2019;88(3):350–362.
  • Lessard J-P, Gill J. Ant community response to disturbance: a global synthesis. J Anim Ecol. 2019;88(3):346–349.
  • Lawes MJ, Moore AM, Andersen AN, et al. Ants as ecological indicators of rainforest restoration: community convergence and the development of an Ant Forest Indicator Index in the Australian wet tropics. Ecol Evol. 2017;7(20):8442–8455.
  • Toft CA. Feeding ecology of panamanian litter anurans: patterns in diet and foraging mode. J Herpetol. 1981;15(2):139.
  • Van Wilgenburg SL, Mazerolle DF, Hobson KA. Patterns of arthropod abundance, vegetation, and microclimate at boreal forest edge and interior in two landscapes: implications for forest birds. Écoscience. 2001;8(4):454–461.
  • Prates I, Paz A, Brown JL, Carnaval A, Links between prey assemblages and poison frog toxins: a landscape ecology approach to assess how biotic interactions affect species phenotypes. Ecology and Evolution. 2019;9(24):14317–14329.
  • Fischer EK, Roland AB, Moskowitz NA, et al. Mechanisms of Convergent Egg Provisioning in Poison Frogs. Curr Biol. 2019;29(23):4145–4151.e3.
  • Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294–299.
  • Ratnasingham S, Hebert PDN. BARCODING: bold: the barcode of life data system(http://www.barcodinglife.org). Mol Ecol Notes. 2007;7(3):355–364.
  • Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci. 2003;270(Suppl 1):S96–9.
  • Donoso DA, Ramón G. Composition of a high diversity leaf litter ant community (Hymenoptera: Formicidae) from an Ecuadorian pre-montane rainforest. Annales de la Société Entomologique de France (N.S.). 2009;45(4):487–499.
  • Donoso DA. Tropical ant communities are in long-term equilibrium. Ecol Indic. 2017;83:515–523.
  • Salazar F, Reyes-Bueno F, Sanmartin D, et al. Mapping continental Ecuadorian ant species. Sociobiology. 2015;62(2). DOI:https://doi.org/10.13102/sociobiology.v62i2.132-162
  • Daly JW, Spande TF, Garraffo HM. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J Nat Prod. 2005;68(10):1556–1575.
  • Stein SE. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom. 1999;10(8):770–781.
  • Wilkinson L. ggplot2: elegant graphics for data analysis by WICKHAM, H. Biometrics. 2011;67(2):678–679.
  • Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927–930.
  • Saporito RA, Garraffo HM, Donnelly MA, et al. Formicine ants: an arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc Natl Acad Sci USA. 2004;101(21):8045–8050.
  • Wild A. Taxonomic revision of the ant genus Linepithema (Hymenoptera: Formicidae). Univ of California Press; 2007, Berkeley, California, USA.
  • McGlynn TP, Dunn T, Wayman E, et al. A thermophile in the shade: light-directed nest relocation in the Costa Rican ant Ectatomma ruidum. J Trop Ecol. 2010;26(5):559–562.
  • Darst CR, Menéndez‐Guerrero PA, Coloma LA, et al. Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. Am Nat. 2005;165(1):56–69.
  • Donnelly MA. Feeding patterns of the strawberry poison frog, dendrobates pumilio (Anura: Dendrobatidae). Copeia. 1991;1991(3):723.
  • Valderrama-Vernaza M, RamÍrez-Pinilla MP, Serrano-Cardozo VH. Diet of the andean frog ranitomeya virolinensis (Athesphatanura: Dendrobatidae). J Herpetol. 2009;43(1):114–123.
  • Ordoñez-Ifarraguerri A, Siliceo-Cantero HH, Suazo-Ortuño I, et al. Does a frog change its diet along a successional forest gradient? The case of the shovel-nosed treefrog (Diaglena spatulata) in a tropical dry forest in Western Mexico. J Herpetol. 2017;51(3):411–416.
  • Nowakowski AJ, Otero Jiménez B, Allen M, et al. Landscape resistance to movement of the poison frog, Oophaga pumilio, in the lowlands of northeastern Costa Rica. Anim Conserv. 2013;16(2):188–197.
  • Vences M, Kniel C. Mikrophage und myrmecophage Ernaehrungs-spezialisierung bei madagassischen Giftfroeschen der Gattung Mantella. Salamandra. 1998;34:245–254.
  • Moskowitz NA, Roland AB, Fischer EK, et al. Seasonal changes in diet and chemical defense in the Climbing Mantella frog (Mantella laevigata). PLoS One. 2018;13(12):e0207940.
  • McElroy MT, Donoso DA. Ant Morphology Mediates Diet Preference in a Neotropical Toad (Rhinella alata). Copeia. 2019; 107(3):430-438. https://doi.org/https://doi.org/10.1643/CH-18-162.
  • Konopik O, Gray CL, Ulmar Grafe T, et al. From rainforest to oil palm plantations: shifts in predator population and prey communities, but resistant interactions. Global Ecol Conser. 2014;2:385–394.
  • Clark VC, Raxworthy CJ, Rakotomalala V, et al. Convergent evolution of chemical defense in poison frogs and arthropod prey between Madagascar and the Neotropics. Proc Natl Acad Sci USA. 2005;102(33):11617–11622.
  • Clark VC, Rakotomalala V, Ramilijaona O, et al. Individual variation in alkaloid content of poison frogs of Madagascar (Mantella; Mantellidae). J Chem Ecol. 2006;32(10):2219–2233.
  • Andriamaharavo NR, Garraffo HM, Saporito RA, et al. Roughing it: a mantellid poison frog shows greater alkaloid diversity in some disturbed habitats. J Nat Prod. 2010;73(3):322–330.
  • Daly JW, Garraffo HM, Jain P, et al. Arthropod–frog connection: decahydroquinoline and pyrrolizidine alkaloids common to microsympatric myrmicine ants and dendrobatid frogs. J Chem Ecol. 2000;26(1):73–85.
  • Daly JW, Ware N, Saporito RA, et al. N-Methyldecahydroquinolines: An unexpected class of alkaloids from Amazonian Poison Frogs (Dendrobatidae). J. Nat. Prod. 2009;72:1110–1114.
  • Daly JW, Secunda SI, Garraffo HM, et al. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon. 1994;32(6):657–663.
  • Ziegler J, Facchini PJ. Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol. 2008;59(1):735–769.
  • Gershenzon J. Alkaloids: biochemistry, ecology, and medicinal applications. Crop Sci. 1999;39(4):1251.
  • Schlaepfer MA, Gavin TA. Edge effects on lizards and frogs in tropical forest fragments. Conserv Biol. 2001;15(4):1079–1090.