1,205
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using noninvasive techniques to monitor game species targeted by poaching in Misiones, Argentina

ORCID Icon, &
Pages 78-85 | Received 22 Jul 2020, Accepted 24 Feb 2021, Published online: 16 Mar 2021

References

  • Di Bitetti MS, Placci G, Dietz LA Una visión de biodiversidad para la ecorregión del bosque Atlántico del Alto Paraná: diseño de un paisaje para la conservación de la biodiversidad y prioridades para las acciones de conservación. [A biodiversity vision for the Upper Paraná Atlantic forest ecoregion: design of a landscape for the conservation of biodiversity and priorities for conservation actions]. Washington (DC); World Wildlife Fund; 2003.
  • García Fernández J El corredor verde de Misiones: una experiencia de planificación a escala bio-regional. In: La selva Misionera: opciones para su conservación y uso sustentable. [The green corridor of Misiones: a planning experience on a bio-regional scale. In: the Misiones’s forest: options for its conservation and sustainable use]. Buenos Aires Argentina; FUCEMA; 2002; p. 17–71.
  • Cinto JP, Bertolini MP. Conservation capacity in the Paraná forest. In: Galindo-Leal C, De Gusmão Câmara I, editors. The Atlantic forest of South America: biodiversity status, threats, and outlook (state of the hotspots). Washington (DC): Island Press; 2003. p. 227–244.
  • Holz S, Placci LG. Socioeconomic roots of biodiversity loss in Misiones. In: Galindo-Leal C, De Gusmão Câmara I, editors. The Atlantic Forest of South America: biodiversity status, threats, and outlook (state of the hotspots). Washington (DC): Island Press; 2003. p. 207–226.
  • DeMatteo KE, Rinas MA, Argüelles CF, et al. Using detection dogs and genetic analyses of scat to expand knowledge and assist felid conservation in Misiones, Argentina. Integr Zool. 2014;95:623–639.
  • DeMatteo KE, Rinas MA, Argüelles CF, et al. Noninvasive techniques provide novel insights for elusive bush dog (Speothos venaticus). Wildl Soc B. 2014;38(4):862–873.
  • DeMatteo KE, Rinas MA, Zurano JP, et al. Using niche-modelling and species-specific cost analyses to determine a multispecies corridor in a fragmented landscape. PLoS One. 2017;12(8):e0183648.
  • Dirzo R, Miranda A. Altered patterns of herbivory and diversity in the forest understory: a case study of the possible consequences of contemporary defaunation. In: Price PW, Lewinsohn TM, Fernandes GW, et al., editors. Plant-animal interactions: evolutionary ecology in tropical and temperate regions. New York (NY): Wiley and Sons; 1991. p. 273–287.
  • Terborgh J, Wright SJ. Effects of mammalian herbivores on plant recruitment in two Neotropical forests. Ecology. 1994;75:1829–1833.
  • Lande R. Genetics and demography in biological conservation. Science. 1988;241:1455–1460.
  • Terborgh J. Maintenance of diversity in tropical forests. Biotropica. 1992;24:283–292.
  • Phillips OL. The changing ecology of tropical forests. Biodivers Conserv. 1997;6:291–311.
  • Dirzo R. Plant-mammal interactions: lessons for our understanding of nature, and implications for biodiversity conservation. In: Press MC, Huntly NJ, Levin S, editors. Ecology: achievement and challenge. Oxford (UK): Blackwell Science; 2001. p. 319–335.
  • Redford KH. The empty forest. BioSci. 1992;42:412–422.
  • Bennett EL, Eves H, Robinson J, et al. Why is eating bushmeat a biodiversity crisis? Conserv Biol Pract. 2002;3:28–29.
  • Alvard MS, Robinson JG, Redford KH, et al. The sustainability of subsistence hunting in the Neotropics. Conserv Biol. 1997;11(4):977–982.
  • Bodmer R, Aquino R, Puertas P, et al. Manejo y uso sustentable de pecaríes en la Amazonia Peruana. [Management and sustainable use of peccaries in the Peruvian Amazon]. Quito, Spanish: IUCN-Sur; 1997.
  • Cullen L Jr., Bodmer RE, Pádua C. Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biol Conserv. 2000;95:49–56.
  • Giraudo AR, Abramson RR Diversidad cultural y usos de la fauna silvestre por los pobladores de la selva misionera. ¿Una alternativa de conservación? In: bertonatti C, Corcuera J, editors. La Situación Ambiental Argentina 2000. [Cultural diversity and uses of wild fauna by the inhabitants of the Misiones’s forest. A conservation alternative? In: bertonatti C, Corcuera J, editors. The Argentinean Environmental Situation 2000]. Buenos Aires Argentina; Fundación Vida Silvestre; 2000; p. 233–243.
  • Smith DA, Ralls K, Hurt A, et al. Detection and accuracy rates of dogs trained to find scats of San Joaquin kit foxes (Vulpes macrotis mutica). Anim Conserv. 2003;6:339–346.
  • Wasser SK, Davenport B, Ramage ER, et al. Scat detection dogs in wildlife research and management: applications to grizzly and black bears in the Yellowhead ecosystem, Alberta, Canada. Can J Zool. 2004;82:475–492.
  • Cablk ME, Heaton JS. Accuracy and reliability of dogs in surveying for desert tortoise (Gopherus agassizii). Ecol Appl. 2006;16:1926–1935.
  • Long RA, Donovan TM, Mackay P, et al. Comparing scat detection, dogs, cameras and hair snares for surveying carnivores. J Wildl Manage. 2007;71:2018–2035.
  • Long RA, Donovan TM, Mackay P, et al. Effectiveness of scat detection dogs for detecting forest carnivores. J Wildl Manage. 2007;71:2007–2017.
  • DeMatteo KE, Rinas MA, Sede MM, et al. Detection dogs: an effective technique for bush dog (Speothos venaticus) surveys. J Wildl Manage. 2009;3(8):1436–1440.
  • Vynne C, Baker MR, Breuer ZK, et al. Factors influencing degradation of DNA and hormones in maned wolf scat. Anim Conserv. 2011;15:184–194.
  • Izquierdo AE, Clark ML. Spatial analysis of conservation priorities based on ecosystem services in the Atlantic forest region of Misiones, Argentina. Forests. 2012;3:764–786.
  • Crespo JA. Ecología de la comunidad de mamíferos del Parque Nacional Iguazú, Misiones. [Ecology of the mammal community of the Iguazú National Park, Misiones]. Ecología. 1982;3:45–162.
  • DeMatteo KE, Davenport B, Wilson LE. Back to the basics with conservation detection dogs: fundamental for success. Wildl Bio. 2019;1:1–9.
  • Cartes JL. Brief history of conservation in the Interior Atlantic forest. In: Galindo-Leal C, De Gusmão Câmara I, editors. The Atlantic forest of South America: biodiversity status, threats, and outlook (state of the hotspots). Washington (DC): Island Press; 2003. p. 269–287.
  • Giraudo AR, Povedano H, Belgrano MJ, et al. Biodiversity status of the Interior Atlantic Forest of Argentina. In: Galindo-Leal C, De Gusmão Câmara I, editors. The Atlantic Forest of South America: biodiversity status, threats, and outlook (state of the hotspots). Washington (DC): Island Press; 2003. p. 160–180.
  • Ball MC, Pither R, Manseau M, et al. Characterization of target nuclear DNA from faeces reduces technical issues associated with the assumptions of low-quality and quantity template. Conserv Genet. 2007;8:577–586.
  • Rutledge LY, Holloway JJ, Patterson BR, et al. An improved field method to obtain DNA for individual identification from wolf scat. J Wildl Manage. 2009;73:1430–1435.
  • Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual. New York (NY): Cold Spring Harbor Laboratory Press; 1989.
  • Vynne C Landscape use by wide-ranging mammals of the Brazilian Cerrado [dissertation]. Seattle (WA); University of Washington; 2010.
  • Farrell LE, Roman J, Sunquist ME. Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol. 2000;9:1583–1590.
  • Miotto RA, Rodrigues FP, Ciocheti F, et al. Determination of the minimum population size of pumas (Puma concolor) through fecal DNA analysis in two protected cerrado areas in the Brazilian southeast. Biotropica. 2007;39:647–654.
  • Altschul SF, Grish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
  • Rodgers TW, Janečka JE. Applications and techniques for non-invasive faecal genetics research in felid conservation. Eur J Wildl Res. 2013;59(1):1–16.
  • Von Der Ohe CG, Servheen C. Measuring stress in mammal using fecal glucocorticoids: opportunities and challenges. Wildl Soc B. 2002;30(4):1215–1225.
  • Reed JE, Baker RJ, Ballard WB, et al. Differentiating Mexican gray wolf and coyote scats using DNA analysis. Wildl Soc B. 2004;32:685–692.
  • Kohn MH, York EC, Kamradt DA, et al. Estimating population size by genotyping faeces. Proc R Soc London Ser B. 1999;266:657–663.
  • Palomares F, Godoy JA, Piriz A, et al. Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol. 2002;11:2171–2182.
  • Creel S, Spong G, Sands JL, et al. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol. 2003;12:2003–2009.
  • Hedmark E, Ø F, Segerström P, et al. DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet. 2004;5:405–410.
  • Schwartz MK, Pilgrim KL, McKelvey KS, et al. Hybridization between Canada lynx and bobcats: genetic results and management implications. Conserv Genet. 2004;5:349–355.
  • Kohn MH, Wayne RK. Facts from feces revisited. Trends Ecol Evol. 1997;12:223–227.
  • Reed JZ, Tollit DJ, Thompson PM, et al. Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identification to seal faeces. Mol Ecol. 1997;6:225–234.
  • Vázquez-Domínguez E, Hafner DJ. Genética y mamíferos mexicanos: presente y futuro. [Genetics and Mexican mammals: present and future]. N M Mus Nat Hist Sci Bull. 2006;32:37–44.
  • Wayne RK, Geffen E, Girman DJ, et al. Molecular systematics of the Canidae. Syst Zool. 1997;46:622–653.
  • Irwin DE. Phylogeographic breaks without geographic barriers to gene flow. Evol. 2002;56:2383–2394.
  • Janečka J, Jackson R, Yuquang Z, et al. Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv. 2008;11:401–411.
  • Teletchea F, Bernillon J, Duffraisse M, et al. Molecular identification of vertebrate species by oligonucleotide microarray in food and forensic samples. J Appl Ecol. 2008;45:967–975.
  • Paviolo A, De Angelo CD, Di Blanco YE, et al. Efecto de la caza furtiva y el nivel de protección en la abundancia de los grandes mamíferos del Bosque Atlántico de Misiones. In: contribuciones para la conservación y manejo en el Parque Nacional Iguazú. [Effect of poaching and the level of protection on the abundance of large mammals in the Atlantic Forest of Misiones. In: contributions for conservation and management in the Iguazú National Park]. Buenos Aires Argentina; Administración de Parques Nacionales; 2009; p. 237–254.
  • Bodmer RE. Responses of ungulates to seasonal inundations in the Amazon floodplain. J Trop Ecol. 1990;6:191–201.
  • Crawshaw PG Jr. Comparative ecology of ocelot Felis pardalis and Jaguar Panthera onca in a protected subtropical forest in Brazil and Argentina [dissertation]. Gainesville (FL); University of Florida; 1995.
  • Peres CA. Population status of white-lipped Tayassu pecari and collared peccaries Tayassu tajacu in hunted and unhunted Amazonian forests. Biol Conserv. 1996;77:115–123.
  • Fragoso J. Desapariciones locales del baquiro labiado (Tayassu pecari) en la Amazonia: migración, sobre-cosecha o epidemia? In: Fang T, Bodmer R, Aquino R, et al., editors. Manejo de fauna silvestre en la Amazonía. La Paz Bolivia: Instituto de Ecología; 1997. p. 309–312.
  • Krebs CJ, Myers JH. Population cycles in small mammals. Adv Ecol Res. 1974;8:267–399.
  • Grenfell BT, Price OF, Albon SD, et al. Overcompensation and population cycles in an ungulate. Nature. 1992;355:823–826.
  • Briceño-Méndez M, Reyna-Hurtado R, Calmé S, et al. Preferencias de hábitat y abundancia relativa de Tayassu pecari en un área con cacería en la región de Calakmul, Campeche, México. [Habitat preferences and relative abundance of Tayassu pecari in an area with hunting in the region of Calakmul, Campech, Mexico]. Rev Mex Biodivers. 2014;85:242–250.
  • Reyna-Hurtado R, Beck H, Altrichter M, et al. What ecological and anthropogenic factors affect group size in white-lipped peccaries (Tayassu pecari)? Biotropica. 2015:1–9.
  • Peres CA. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv Biol. 2001;15:1490–1505.
  • Novaro AJ, Redford KH, Bodmer RE. Effect on hunting in source-sink system in the neotropics. Conserv Biol. 2000;14:713–721.
  • Castellanos AX The threat of road-kill to Andean tapirs: the case of ‘Jorgito”, the Andean tapir that lived beside the Quito-Amazon highway, Ecuador. Boletín Técnico 14, Serie Zoológica 2019;14–15
  • Medici EP, Mangini PR, Fernandes-Santos RC. Health assessment of wild lowland tapir (Tapirus terrestris) populations in the Atlantic forest and Pantanal biomes, Brazil (1996-2012). Wildl Dis. 2014;50(4):817–828.
  • Paviolo A, Di Blanco YE, Varela D, et al. Regional assessment of the status of lowland tapirs (Tapirus terrestris) in the Upper Paraná Atlantic Forest Ecoregion. Proceedings of the Simposio Internacional de Tapires. Buenos Aires Argentina; IUCN; 2006.
  • Matamoros Y Notas sobre la biología del tepezcuinte, Cuniculus paca, Brisson (Rodentia: dasyproctidae) en cautiverio. [Notes about biology of the tepezcuinte, Cuniculus paca, Brisson (Rodentia: dasyproctidae) in captivity]. Brenesia, San José; 1982:71–82.
  • Boas F, Caceres N, Graipel M, et al. Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm Biol. 2009;74:182–190.
  • Giraudo AR, Abramson RR Usos de la fauna silvestre por los pobladores rurales en la selva paranaense de Misiones: tipos de uso, influencia de la fragmentación y posibilidades de manejo sustentable. [Uses of wild fauna by rural inhabitants in the Paraná forest of Misiones: types of use, influence of fragmentation and possibilities of sustainable management]. Boletín Técnico de la Fundación Vida Silvestre Argentina. 1998;47:1–41.
  • Sotorres D Identificación forense y análisis de distribución de especies presa a lo largo del corredor biológico propuesto para Misiones (Argentina). [Forensic identification and analysis of distribution of species in the proposed biological corridor for Misiones (Argentina).]. 2019. Spanish.