3,225
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Geometry morphometrics of plant structures as a phenotypic tool to differentiate Polylepis incana Kunth. and Polylepis racemosa Ruiz & Pav. reforested jointly in Ecuador

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 121-134 | Received 12 Aug 2020, Accepted 11 Mar 2021, Published online: 11 Apr 2021

References

  • Gibson L, Lee TM, Koh LP, et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature. 2011;478(7369):378–381.
  • Chazdon RL. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science. 2008;320(5882):1458–1460.
  • Wright SJ. Tropical forests in a changing environment. Trends Ecol Evol. 2005;20(10):553–560.
  • Romoleroux K, Cárate-Tandalla D, Erler R, et al. Plantas vasculares de los bosques de Polylepis en los páramos de Oyacachi [Internet]. 2019. [cited 2020 Apr 10]. Available from: https://bioweb.bio/floraweb/polylepis/home.
  • Zutta BR, Rundel PW, Saatchi S, et al. Prediciendo la distribución de Polylepis: bosques Andinos vulnerables y cada vez más importantes. Rev Peru Biol. 2012;19(2):205–212.
  • Renison D, Hensen I, Cingolani AM. Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. For Ecol Manage. 2004;196(2–3):327–333.
  • Fernández De Córdova Torres J, Santillán RV. Evaluación de la importancia de los parches de quinua (Polylepis spp) como refugio para especies de micromamíferos no voladores en el Parque Nacional del Cajas (PNC). Universidad del Azuay-Cuenca; 2006.
  • Fjeldså J. Polylepis forests-vestiges of a vanishing ecosystem in the Andes. Ecotropica. 2002;8:111–123.
  • Peng Y, Morales L, Hensen I, et al. No effect of elevation and fragmentation on genetic diversity and structure in Polylepis australis trees from central Argentina. Austral Ecol. 2017;42(3):288–296.
  • Renison D, Cingolani AM. Experiencias en germinación y reproducción vegetativa aplicados a la reforestación con Polylepis australis (Rosaceae) en las Sierras Grandes de Córdoba, Argentina. AgriScientia. 1998;15:47–53.
  • Ministerio del Ambiente del Ecuador. Estrategia Nacional de Biodiversidad 2015-2030 [Internet]. Prim. Ed. Quito, Ecuador; 2016 [cited 2020 Apr 14]. p. 225. Available from: http://maetransparente.ambiente.gob.ec/documentacion/WebAPs/Estrategia Nacional de Biodiversidad 2015-2030 - CALIDAD WEB.pdf.
  • Segovia MC. Los riesgos de la reforestación de los páramos con especies exóticas: el caso Polylepis racemosa. Propuestas Andin. 2011;4:1–4.
  • World Conservation Monitoring Centre. Polylepis incana. The IUCN Red List of Threatened Species 1998. [Internet]. Available from: https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32990A9742243.en.
  • Segovia-Salcedo M, Quijia P, Proaño K, et al. El Estado de Conservacion de los bosques de Yagual en el Ecuador (Polylepis, Rosaceae: Rosoideae: Sanguisorbeae):hibridacion, translocacion e introduccion de especies exoticas. 2011.
  • Demandt MH, Bergek S. Identification of cyprinid hybrids by using geometric morphometrics and microsatellites. J Appl Ichthyol. 2009;25(6):695–701.
  • Morandini R. Genética y mejora de las especies exóticas forestales. Unasylva. 1964;18:51–60.
  • Vilà M, Weber E, Antonio CMD. Conservation implications of invasion by plant hybridization. Biol Invasions. 2000;2(3):207–217.
  • Kahilainen KK, Østbye K, Harrod C, et al. Species introduction promotes hybridization and introgression in Coregonus: is there sign of selection against hybrids? Mol Ecol. 2011;20(18):3838–3855.
  • Aguirre W, Jiménez Prado P. Guía práctica de Morfometría Geométrica. Aplicaciones en la ictiología. Esmeraldas, Ecuador: Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE); 2018.
  • Silva MFS, De Andrade IM, Mayo SJ. Geometric morphometrics of leaf blade shape in Montrichardia linifera (Araceae) populations from the Rio Parnaíba Delta, north-east Brazil. Bot J Linn Soc. 2012;170(4):554–572.
  • Berger BA, Ricigliano VA, Savriama Y, et al. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE. BMC Plant Biol. 2017;17(1):17.
  • Viscosi V, Leaf Morphology CA, Lalueza-Fox C, Taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS One. Lalueza-Fox C, editor. [Internet]. 2011;6:e25630. Available from ;(10);.https://dx.plos.org/10.1371/journal.pone.0025630
  • Jensen RJ. The conundrum of morphometrics. Taxon. 2003;52(4):663–671.
  • Liu Y, Li Y, Song J, et al. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Ann For Sci. 2018;75(4):90.
  • Innangi M, Friščić M, Hazler Pilepić K, et al. Explaining intricate morphometric variability with environmental predictors: the case of globularia cordifolia species complex. Plants. 2020;9(3):314.
  • Bonhomme V, Prasad S, Gaucherel C, Intraspecific variability of pollen morphology as revealed by elliptic Fourier analysis. Plant Syst Evol. Internet]. 2013;299:811–816. Available from. ;(5):. http://link.springer.com/10.1007/s00606-013-0762-5
  • Kriebel R, Khabbazian M, Sytsma KJ. A continuous morphological approach to study the evolution of pollen in a phylogenetic context: an example with the order Myrtales. PLoS One. 2017;12(12):1–27.
  • Cárdenas D, De La Parra F, Espinoza-Campuzano C. Morphologic variation of two key biostratigraphical proteaceous-like pollen taxa across the Cretaceous–Paleogene boundary in northern South America. Grana. 2019;58(4):276–291.
  • Joly S, Bruneau A, Delimiting species boundaries in rosa sect. Cinnamomeae (Rosaceae) in Eastern North America. Syst Bot. Internet]. 2007;32:819–836. Available from. ;(4):. http://www.ingentaconnect.com/content/10.1600/036364407783390863
  • Caiza JC, Vargas D, Olmedo C, et al. Measurement of stomata and pollen as an indirect indicator of polyploidy in the genus polylepis (Rosaceae) in Ecuador. Ecol Austral. 2018;28(1bis):175–187.
  • Filho HAA, Bruno OM. Plants with purple abaxial leaves: a repository of metrics from stomata distribution. bioRxiv. Internet]. 2018;294553. Available from; :. https://www.biorxiv.org/content/early/2018/04/04/294553
  • Some Leaf SU Characteristics are better morphometric discriminators for chestnut genotypes. 2011. [cited 2020 Apr 01].  Available from: https://www.researchgate.net/publication/266872762_Some_Leaf_Characteristics_are_Better_Morphometric_Discriminators_for_Chestnut_Genotypes.
  • Da Silva NR, Oliveira MWDS, Filho HADA, et al. Leaf epidermis images for robust identification of plants. Sci Rep. 2016;6(1):25994.
  • Klingenberg CP, Duttke S, Whelan S, et al. Developmental plasticity, morphological variation and evolvability: a multilevel analysis of morphometric integration in the shape of compound leaves. J Evol Biol. 2012;25(1):115–129.
  • Caiza Guamba JC. Análisis de Morfometría Geométrica de hojas compuestas de  Polylepis incana Kunth. y P. racemosa Ruiz & Pav. para diferenciar especies y potenciales híbridos en el Ecuador. Univ. las Fuerzas Armadas-ESPE; Quito-Ecuador. 2019.
  • Domic AI, Mamani E, Camilo G. Fenología reproductiva de la kewiña (Polylepis tomentella, Rosaceae) en la puna semihúmeda de Chuquisaca (Bolivia). Ecol En Boliv. 2013;48:31–45.
  • Hanot P, Herrel A, Guintard C, et al. Unravelling the hybrid vigor in domestic equids: the effect of hybridization on bone shape variation and covariation. BMC Evol Biol. 2019;19(1):1–13.
  • Savriama YA. Step-by-step guide for geometric morphometrics of floral symmetry. Front Plant Sci. 2018;9:1–23.
  • Klingenberg CP. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol. 2016;226(3):113–137.
  • Sheets HD, Covino KM, Panasiewicz JM, et al. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front Zool. 2006;3:3.
  • Boza Espinoza TE, Quispe-Melgar HR, Kessler M. Taxonomic reevaluation of the polylepis sericea complex (Rosaceae), with the description of a new species. Syst Bot. 2019;44(2):324–334.
  • Segovia-Salcedo MC, Domic A, Boza T, et al. Situación taxonómica de las especies del género polylepis. Implicancias para los estudios ecológicos, la conservación y la restauración de sus bosques. Ecol Austral. 2018;28(1bis):188–201.
  • Schmidt‐Lebuhn AN, Fuchs J, Hertel D, et al. An Andean radiation: polyploidy in the tree genus Polylepis (Rosaceae, Sanguisorbeae). Plant Biol. 2010;12(6):917–926.
  • Schmidt-Lebuhn AN, Kessler M, Kumar M. Promiscuity in the Andes: species relationships in polylepis (Rosaceae, Sanguisorbeae) based on AFLP and morphology. Syst Bot. 2006;31(3):547–559.
  • Kessler M, Schmidt-Lebuhn AN. Taxonomical and distributional notes on Polylepis (Rosaceae). Org Divers Evol. 2006;6(1):67–70.
  • Fernández-Fernández D, Mayorga EF, Cevallos MP. Importancia de los herbarios ecuatorianos en la conservación de plantas Amenazadas. 2015 [cited 2020 Apr 01]. Available from:  https://www.researchgate.net/profile/Diana-Fernandez-Fernandez/publication/304215210_Importancia_de_los_Herbarios_Ecuatorianos_en_la_Conservacion_de_Plantas_Amenazadas/links/5769968908ae1a43d23a36f1/Importancia-de-los-Herbarios-Ecuatorianos-en-la-Conservacion-de-Plantas-Amenazadas.pdf
  • Mendoza W, Cano A. Diversidad del género polylepis (Rosaceae, Sanguisorbeae) en los Andes peruanos. Rev Peru Biol. 2011;18(2):197–200.
  • Viscosi V. Geometric morphometrics and leaf phenotypic plasticity: assessing fluctuating asymmetry and allometry in European white oaks (Quercus). Bot J Linn Soc. 2015;179(2):335–348.
  • Piedra-Malagón EM, Albarrán-Lara AL, Rull J, et al. Using multiple sources of characters to delimit species in the genus Crataegus (Rosaceae): the case of the Crataegus rosei complex. Syst Biodivers. 2016;14(2):244–260.
  • Miljković D, Stefanović M, Orlović S, et al. Wild cherry (Prunus avium (L.) L.) leaf shape and size variations in natural populations at different elevations. Alp Bot. 2019;129(2):163–174.
  • Simpson BBA. Revision of the genus polylepis (Rosaceae: sanguisorbeae). Contrib to Bot. 1979;43(1):1–62. Smithson.
  • Manly BFJ, Alberto JAN. Multivariate statistical methods: a primer. CRC press; 2016;4(1):52–54:.
  • Borror CM. Analyzing multivariate data. J Qual Technol. 2003;35(4):426.
  • Zelditch ML, Swiderski DL, Sheets HD. Geometric morphometrics for biologists: a primer. Academic Press; 2012;2(1):20–50.
  • Innangi M, Izzo A. Pinguicula lavalvae (Lentibulariaceae), a new endemic butterwort from southern Italy diagnosed with the aid of geometric morphometrics. Plant Biosyst. 2015;149(6):990–999.
  • Escobedo MT, Mendoza JASP PCH. Mahalanobis y las aplicaciones de su distancia estadística. Cult Científica Y Tecnológica. 2015;27(5):20–21.
  • Castro SP, Dávila MAG. Caracterización morfológica de 93 accesiones de Capsicum spp del banco de germoplasma de La Universidad Nacional de Colombia-Sede Palmira. Acta Agronómica. 2008;57:247–252.
  • Romoleroux K. Flora of Ecuador. In: Harling G, Andersson L, editors. Rosaceae. Copenhagen: Council for Nordic Publications in Botany; 1996. p. 71–89.
  • Idu M, Olorunfemi DI, Omonhinmin AC. Systematics value of stomata in some Nigerian hardwood species of Fabaceae. Plant Biosyst. 2000;134(1):53–60.
  • Saheed SA, Illoh HC. A taxonomic study of some species in Cassiinae (Leguminosae) using leaf epidermal characters. Not Bot Horti Agrobot Cluj-Napoca. 2010;38:21–27.
  • Boza Espinoza TE, Popp V, Kessler M. Guard cell sizes and ploidy levels in Polylepis (Rosaceae). Neotrop Biodivers. 2020;6(1):178–192.
  • Dujardin JP. Modern morphometrics of medically important insects. Genet Evol Infect Dis Elsevier Inc. 2011;1(1):473–501.
  • Arnqvist G, Martensson T. Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zool Acad Sci Hungaricae. 1998;44:73–96.
  • Lougheed SC, Arnold TW, Bailey RC. Measurement error of external and skeletal variables in birds and its effect on principal components. Auk. 1991;108:432–436.
  • Savriama Y, Gómez JM, Perfectti F, et al. Geometric morphometrics of corolla shape: dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytol. 2012;196(3):945–954.
  • Gardner AG, Gerald JNF, Menz J, et al. Characterizing floral symmetry in the Core Goodeniaceae with geometric morphometrics. PLoS One. 2016;11(5):11.
  • Ab SHIPUNOV, Rm BATEMAN, Geometric morphometrics as a tool for understanding Dactylorhiza (Orchidaceae) diversity in European Russia. Biol J Linn Soc. Internet]. 2005;85:1–12. Available from. ;(1):. https://academic.oup.com/biolinnean/article-lookup/doi/10.1111/j.1095-8312.2005.00468.x
  • Jdt De C, Essi L, Jms De O. Flower and floral trichome morphology of species of Dyckia Schult. f. (Bromeliaceae, Pitcairnioideae), and their importance to species characterization and genus taxonomy. Acta Bot Brasilica. 2017;31(1):29–41.
  • Romero-Torres G. Reserva ecológica Los Ilinizas. Quito, Ecuador: Inst. Ecuatoriano For. Áreas Nat. y Vida Silv; 1997.
  • Viscosi V, Fortini P, Slice DE, et al. Geometric morphometric analyses of leaf variation in four oak species of the subgenus Quercus (Fagaceae). Plant Biosyst. 2009;143(3):575–587.
  • Brock MT, Weinig C. Plasticity and environment-specific covariances: an investigation of floral-vegetative and within flower correlations. Evolution (N Y). 2007;61:2913–2924.
  • Aragundi S, Hamrick JL, Parker KC, Genetic insights into the historical distribution of Polylepis pauta (Rosaceae) in the northeastern cordillera oriental of Ecuador. Conserv Genet. Internet]. 2011;12:607–618. Available from. ;(3):. http://link.springer.com/10.1007/s10592-010-0165-x https://doi.org/10.1007/s10592-010-0165-x
  • McGuire JL. Geometric morphometrics of vole (Microtus californicus) dentition as a new paleoclimate proxy: shape change along geographic and climatic clines. Quat Int. 2010;212(2):198–205.
  • Klein LL, Caito M, Chapnick C, et al. Digital morphometrics of two north american grapevines (Vitis: vitaceae) quantifies leaf variation between species, within species, and among individuals. Front Plant Sci. 2017;8:1–10.
  • Francoy TM, Fonseca VLI. A morfometria geométrica de asas e a identificação automática de espécies de abelhas. Oecologia Aust. 2010;14(1):317–321.
  • De Morais DV, Nunes LA, Da Mata VP, et al. Leaf geometric morphometrics among populations of dalbergia ecastaphyllum (L.) taub. Biosci J. 2019;35(6):1789–1798.
  • Segovia-Salcedo MC. Phenetic analyses of the genus Polylepis Ruiz&Pav., in three areas of diversification in Ecuador. Ohio University-USA; 2001.
  • Lindbladh M, O’Connor R, Jacobson JGL. Morphometric analysis of pollen grains for paleoecological studies: classification of picea from eastern North America. Am J Bot. 2002;89(9):1459–1467.
  • Carleial S, Van Kleunen M, Stift M. Small reductions in corolla size and pollen: ovule ratio, but no changes in flower shape in selfing populations of the North American Arabidopsis lyrata. Oecologia. 2017;183(2):401–413.