597
Views
0
CrossRef citations to date
0
Altmetric
Research Article

How do assemblages of epigeal Araneae and Coleoptera respond to changes in habitat structure caused by sugar cane crops in Northern Argentina?

, , ORCID Icon, &
Pages 323-342 | Received 21 Dec 2021, Accepted 24 Sep 2022, Published online: 18 Oct 2022

References

  • Mónaco CG. El avance de la frontera agrícola y su impacto: 9 de Julio, Chaco 1990-2010. Rev Depto Cs Soc. 2016;3(1):117–138.
  • Tscharntke T, Clough Y, Wanger TC, et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv. 2012;151(1):53–59.
  • Morello J, Matteucci, SD, et al. Biodiversidad y fragmentación en los bosques en la Argentina. In: Matteucci SD, Solbrig OT, Morello J, Halffter, Geditors. Biodiversidad y uso de la Tierra. Conceptos y ejemplos de Latinoamérica. Buenos Aires: Eudeba; 1999. p. 463–498.
  • Gasparri NI, Grau HR. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972-2007). For Ecol Manage. 2009;258(6):913–921.
  • Zak MR, Cabido M, Hodgson JG. Do subtropical seasonal forest in the Gran Chaco, Argentina, have a future? Biol Conserv. 2004;120(4):589–598.
  • Torrella SA, Adámoli J, et al. Situación Ambiental de la Ecorregión del Chaco Seco. In: Brown A, Martínez Ortiz U, Acerbi M, Corcuera, J editors. La Situación Ambiental Argentina 2005. Fundación Vida Silvestre Argentina: Buenos Aires; 2005. p. 75–82.
  • Dinerstein E, Olson D, Graham D, et al. Una evaluación del estado de conservación de las ecorregiones terrestres de América Latina y el Caribe. Washington DC: IUCN and World Bank; 2015.
  • Bertonatti C, Corcuera J. Situación Ambiental Argentina 2000. Buenos Aires: Fundación Vida Silvestre; 2000.
  • Ginzburg GR, Torrella SA, Adámoli JM. Las cortinas forestales de bosque nativo, ¿son eficaces para mitigar los efectos de la expansión agrícola? Rev Asoc Argent Ecol Paisajes. 2012;3:34–42.
  • INTA. Primer relevamiento del cultivo de caña de azúcar de la República Argentina a partir de imágenes satelitales para la campaña 2018. Buenos Aires: INTA; 2018.
  • Bommarco R, Kleijn D, Potts SG. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol. 2013;28(4):230–238.
  • Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst. 2003;34(1):487–515.
  • Watling JI, Orrock JL. Measuring edge contrast using biotic criteria helps define edge effects on the density of an invasive plant. Landsc Ecol. 2010;25(1):69–78.
  • Kuussaari M, Bommarco R, Heikkinen RK, et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol. 2009;24(10):564–571.
  • Banks SC, Cary GJ, Smith LA, et al. How does ecological disturbance influence genetic diversity? Trends Ecol Evol. 2013;28(11):670–679.
  • Cardoso P, Pekár S, Jocqué R, et al. Global patterns of guild composition and functional diversity of spiders. PLoS ONE. 2011;6(6):e21710.
  • Blondel J. Guilds or functional groups: does it matter? Oikos. 2003;100(2):223–231.
  • Pearce JL, Venier LA. The use of ground beetles (Coleoptera: carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Indic. 2006;6(4):780–793.
  • Susilo FX, Indriyati I, Hardiwinoto S. Diversity and Abundance of Beetle (Coleoptera) functional groups in a range of land use system in Jambi, Sumatra. Biodiversitas. 2009;10(4):195–200.
  • Theron KJ, Gaigher R, Pryke JS, et al. High quality remnant patches in a complex agricultural landscape sustain high spider diversity. Biol Conserv. 2020;243:108480.
  • Gerlach J, Samways MJ, Pryke JS. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv. 2013;17(4):831–850.
  • Toti DS, Coyle FA, Miller JA. A structured inventory of Appalachian grass bald and heath bald spider assemblages and a test of species richness estimator performance. Journal of Arachnology. 2000;28(3):329–345.
  • Lawrence JF, Newton AF Jr. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In: Pakaluk J, Silpinski SA, editors. Biology, phylogeny, and classification of Coleoptera: papers celebrating the 80th birthday of Roy A. Crowson. Warsaw-Poland: Museum i Instytut Zoologii PAN; 1995: 779–1006.
  • Alonso-Zarazaga MA, Coleoptera O. Revista IDE@-SEA. 2015;55:1–18.
  • Abdel-Dayem MS, Orabi GM, Semida FM. Assessing the potential role of beetles as bioindicators in south Sinai, Egypt. Proc 2nd Internal Confer Entomol Soc Egypt. 2007;1:147e216.
  • Aldhafer HM, Abdel-Dayem MS, Aldryhim YN, et al. Diversity and composition of ground-dwelling beetle assemblages (Insecta: coleoptera) in Rawdhat Khorim National Park, Kingdom of Saudi Arabia. J Arid Environ. 2016;127:187–191.
  • Uetz GW, Halaj J, Cady AB. Guild structure of spiders in major crops. J Arachnol. 1999;27(1):270–280.
  • Castro Herrera R, Chirinos DT, Vega A, García Ortega, Y Entomofauna asociada al cultivo de caña de azúcar en Vainillo, Ecuador, et al. El Misionero del Agro, Universidad Agraria del Ecuador. 2016; 13(3): 23–34.
  • Pérez Ml de P, Isas MG, Salvatore AR, et al. Acrotomopus atropunctellus (Coleoptera: curculionidae) preference for large sugarcane shoots mitigates damage to sugarcane crop. Fla Entomol. 2017;100(3):678–679.
  • Olivo VI, Corronca JA, González-Reyes AX. Dinámica de la comunidad de artrópodos asociada a cultivos de frutilla con plantas de diferentes edades en el noroeste de la Argentina. Agriscientia. 2015;32(1):29–39.
  • Rubio GD. Diversidad de arañas (Araneae, Araneomorphae) en la selva de montaña: un caso de estudio en las Yungas argentinas. Graellsia. 2015;71(2):e029.
  • Torres VM, González-Reyes AX, Rodriguez-Artigas SM, et al. Efectos del disturbio antrópico sobre las poblaciones de Leprolochus birabeni (Araneae, Zodariidae) en el Chaco Seco del noroeste de Argentina. Iheringia Ser Zool. 2016;106:e2016009.
  • Cruz IG, Torres VM, González-Reyes AX, et al. Eficiencia de trampas de caída y suficiencia taxonómica en comunidades de arañas (Araneae) epigeas en tres ecorregiones del noroeste argentino. Rev Biol Trop. 2017;66(1):204–217. https://www.redalyc.org/articulo.oa?id=44955366016.
  • Di Iorio OR. Plantas hospedadoras y biogeografía de Cerambycidae (Coleoptera) del noroeste y centro de la Argentina. Rev Biol Trop. 1996;44(3)(45(1)):149–158.
  • Gagic V, Paull C, Schellhorn NA. Ecosystem service of biological pest control in Australia: the role of non-crop habitats within landscapes. Austral Entomol. 2018;57(2):194–206.
  • Morello J, Matteucci SD, Rodríguez AF, et al. Ecorregiones y complejos ecosistémicos argentinos, 1ed. Buenos Aires: Argentina: Buenos Aires: Orientación Gráfica Editora; 2012.
  • Chébez JC. Guía de las reservas naturales de la Argentina. Noroeste. Buenos Aires: Albatros; 2005.
  • Naumann M. Atlas del Gran Chaco Sudamericano. In: Sociedad Alemana de Cooperación Técnica (GTZ). Buenos Aires: ErreGé & Asoc. 2006: 92.
  • Koenig WD. Spatial autocorrelation of ecological phenomena. Trends Ecol Evol. 1999;14(1):22–26.
  • Hohbein RR, Conway CJ. Pitfall Traps: a review of methods for estimating arthropod abundance. Wildl Soc Bull. 2018;42(4):597–606.
  • Brown GR, Matthews IM. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol Evol. 2016;6(12):3953–3964.
  • Schirmel J, Lenze S, Katzmann D, et al. Capture efficiency of pitfall traps is highly affected by sampling interval. Entomol Exp Appl. 2010;2010(136):206–210.
  • Meteored.com.ar. [Accessed 20 Jun 2020]. Available from: https://www.meteored.com.ar/
  • Grismado CJ, Ramírez MJ, Izquierdo MA. Araneae: taxonomía, diversidad y clave de identificación de familias de la Argentina. In: Roig-Juñent S, Claps LE, Morrone JJ, editors. Biodiversidad de Artrópodos Argentinos Vol. 3. San Miguel de Tucumán- Tucumán (Argentina): Editorial INSUE-Universidad Nacional de Tucumán; 2014: 55–93.
  • Bentancourt CM, Scatoni IB, Morelli E. . In: Insectos del Uruguay. Montevideo-Uruguay: UdelaR. Facultad de Agronomía- Facultad de Ciencias, 2009: 658.
  • Norfolk O, Abdel-Dayem MS, Gilbert F. Rainwater harvesting and arthropod biodiversity within an arid agro-ecosystem. Agri Ecosyst Environ. 2012;2012(162):8–14.
  • Mello-Leitão CF. Arañas del Chaco y Santiago del Estero. Rev Mus La Plata NS Zool. 1942;2:381–426.
  • Marvaldi AE, Lanteri AA. Key to higher taxa of South American weevils based on adult characters (Coleoptera, Curculionoidea). Rev Chil Hist Nat. 2005;78(1):65–87.
  • Aguirre-Tapiero MP. Clave de identificación de géneros conocidos y esperados de Elateridae Leach (Coleoptera: elateroidea) en Colombia. B Mus Entomol Univ Del Valle. 2009;10(2):25–35.
  • Aballay F, Arriagada G, Flores G, et al. An illustrated key to and diagnoses of the species of Histeridae (Coleoptera) associated with decaying carcasses in Argentina. ZooKeys. 2013;61:61–84.
  • Bílý S. A study on the Neotropical Anthaxiini (Coleoptera, Buprestidae, Buprestinae). ZooKeys. 2013;304:17–47.
  • World Spider Catalog. 2021. World Spider Catalog. Version 22.5. Natural History Museum Bern, [2021 Jul 20]. Available from: http://wsc.nmbe.ch
  • Lanteri AA, Del Río MG Naupactini (Coleoptera: curculionidae) species from Argentina and Uruguay. [September 2021]. Available from: https://biodar.unlp.edu.ar/naupactini/
  • Krell FT. Parataxonomy vs. taxonomy in biodiversity studies-pitfalls and applicability of ‘morphospecies’ sorting. Biodiversity and Conservation. 2004;13(4):795–812.
  • Samways MJ, McGeoch MA, New TR. Insects conservation: a handbook of approaches and methods. Techniques in Ecology and Conservation Series. New York: Oxford University Press Inc.; 2010.
  • Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93(12):2533–2547.
  • Chao A, Shen TJ Program SPADE (Species Prediction and Diversity Estimation). 2010. [Cited 2020 Jul 1]. Available from: http://chao.stat.nthu.edu.tw
  • Chao A, Colwell RK, Lin CW, et al. Sufficient sampling for asymptotic minimum species richness estimators. Ecology. 2009;90(4):1125–1133.
  • Cardoso P. Standardization and optimization of arthropod inventories: the case of Iberian spiders. Biodivers Conserv. 2009;18(14):3949–3962.
  • Jost L. Entropy and diversity. Oikos. 2006;113(2):363–375.
  • Hsieh TC, Ma KH, Chao A iNEXT online: interpolation and extrapolation. 2013. Available form: https://chao.shinyapps.io/iNEXTOnline/
  • Krebs CJ. Ecological methodology. New York: Harper & Row; 1999.
  • Ø H, Harper DAT, Ryan PD Past: paleontological statistics software package for education and data analysis. 2001. [accessed 2020 Mar 22]. Available from: http://folk.uio.no/ohammer/past
  • Magurran AE. Measuring biological diversity. Oxford: Blackwell Publishing; 2004.
  • McCune B, Mefford MJPC-ORD. Multivariate analysis of ecological data, versión 7.04. Gleneden Beach: MjM Software Design; 2016.
  • Calderón-Patrón JM, Moreno CE, Zuria I. La diversidad beta: medio siglo de avances. Rev Mex Biodivers. 2012;83:879–891.
  • Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr. 2010;19(1):134–143.
  • Ulrich W, Almeida-Neto M, Gotelli NJ. A consumer’s guide to nestedness analysis. Oikos. 2009;118(1):3–17.
  • Baselga A, Orme CDL, Villéger S, et al. Betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.3. 2013. Available from: http://CRAN.R-project.org/package=betapart
  • Veech JA, Crist TO PARTITION: software for hierarchical partitioning of species diversity. 2009. Available from: http://www.users.muogio.edu/cristto/partition.htm.
  • Crist TO, Veech JA, Gering JC, et al. Partitioning species Diversity across landscape and regions: a hierarchical analysis of α, β and γ diversity. Am Nat. 2003;162(2):734–743.
  • Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67:345–366.
  • McGeoch MA, Van Rensburg BJ, Botes A. The verification and application of bioindicators: a case study of duna beetles in a savanna ecosystem. J Appl Ecol. 2002;39(4):661–672.
  • González E, Salvo A, Valladares G. Sharing enemies: evidence of forest contribution to natural enemy communities in crops, at different spatial scales. Insect Conserv Diver. 2015;8(4):229–236.
  • Gónzalez-Reyes AX, Corronca JA, Arroyo NC. Differences in alpha and beta diversities of epigeous arthropod assemblages in two ecoregions of Northwestern Argentina. Zool Stud. 2012;51(8):1367–1379.
  • Adler PB, Lauenroth WK. The power of time: spatiotemporal scaling of species diversity. Ecol Lett. 2003;6(8):749–756.
  • Jiménez-Valverde A, Hortal J. Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. SEA, Rev Iberica Aracnol. 2003;8:151–161.
  • Altieri MA. The ecological role of biodiversity in agroecosystems. Agr Ecosyst Environ. 1999;74(1–3):19–3l.
  • Hooper DU, Chapin FS, Ewel JJ, et al. Effects of biodiversity on ecosystem functioning: consensus of current knowledge. Ecol Monogr. 2005;75(1):3–35.
  • Armendano A, González A. Spider fauna associated with wheat crops and adjacent habitats in Buenos Aires, Argentina. Rev Mex Biodivers. 2011;82:1176–1182.
  • Medina-Reyes G, Jiménez-Sánchez E, Zaragoza-Caballero S. Diversidad estacional y vertical de coleópteros en la sierra de Guadalupe. Entomol Mex. 2019;6:373–378.
  • Pompozzi GA, Tizón FR, Pelaéz DV. Effects of different frequencies of fire on an epigeal spider community in Southern Caldenal, Argentina. Zool Stud. 2011;50(6):718–724.
  • Flores GE, Lagos SJ, Roig-Juñent S. Artrópodos epigeos que viven bajo la copa del algarrobo (Prosopis flexuosa) en la reserva Telteca (Mendoza, Argentina). Multequina. 2004;13:71–90.
  • Kotiaho JS, Kaitala V, Komonen A, et al. Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci U S A. 2005;102(6):1963–1967.
  • Jocqué R. An updating of the genus Leprolochus (Araneae: zodariidae). Stud Neotrop Fauna E. 1988;23(2):77–87.
  • Pereyra M, Pol RG, Galetto L. Ant community patterns in highly fragmented Chaco forests of central Argentina. Austral Ecol. 2019;44(4):668–679.
  • Buddle CM, Spence JR, Langor DW. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography. 2000;23(4):424–436.
  • Gurdebeke S, De Bakker D, Vanlanduyt N, et al. Plans for a large regional forest in eastern Flanders (Belgium): assessment of spider diversity and community structure in the current forest remnants. Biodivers Conserv. 2003;12(9):1883–1900.
  • Magura T, Horváth R, Tóthmérész B. Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landscape Ecol. 2010;25(4):621–629.
  • Duan M, Hu W, Liu Y, et al. The influence of landscape alterations on changes in ground beetle (Carabidae) and spider (Araneae) functional groups between 1995 and 2013 in an urban fringe of China. Sci Total Environ. 2019;689:516–525.
  • Borchard F, Buchholz S, Helbing F, et al. Carabid beetles and spiders as bioindicators for the evaluation of montane heathland restoration on former spruce forests. Biol Conserv. 2014;178:185–192.
  • Pearce J, Venier L, Eccles G, et al. Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodivers Conserv. 2004;13(7):1305–1334.
  • Entling MH, Stämpffi K, Ovaskainen O. Increased propensity for aerial dispersal in disturbed habitats due to intraspecific variation and species turnover. Oikos. 2011;120(7):1099–1109.
  • Simó M, Laborda A, Jorge C, et al. Las arañas en agroecosistemas: bioindicadores terrestres de calidad ambiental. INNOTEC. 2011;6:51–56.
  • Atencio R, Goebel F, Miranda RJ. Entomofauna associated with sugarcane in Panama. Sugar Tech. 2019;21(4):605–618.
  • Byk A. Abundance and composition of Geotrupidae (Coleoptera: scarabaeoidea) in the developmental cycle of pine stands in Człuchów Forest (NW Poland). Balt J Coleopterol. 2011;11(2):171–186.
  • Cárdenas-Castro E, Páez-Martínez A. Comportamiento reproductivo de coleópteros coprófagos (Coleoptera: scarabaeidae) en condiciones de laboratorio. Rev Cienc Agr. 2017;34(1):74–83.
  • Nichols E, Spector S, Louzada J, et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv. 2008;141(6):1461–1474.
  • Silva RJ, Pelissari TD, Krinski D, et al. Abrupt species loss of the Amazonian dung beetle in pastures adjacent to species-rich forests. J Insect Conserv. 2017;21(3):487–494.
  • Basto-Estrella GS, Rodríguez-Vivas RI, Delfín-González H, et al. Escarabajos estercoleros (Coleoptera: scarabaeidae: scarabaeinae) de ranchos ganaderos de Yucatán, México. Rev Mex Biodivers. 2012;83(2):380–386.
  • Gardner SM, Cabido M, Valladares G, et al. The influence of habitat structure on arthropod diversity in Argentine semi-arid Chaco forest. J Veg Sci. 1995;6(3):349–356.
  • Molina S, Valladares G, Gardner S, et al. Comunidad de insectos capturados en trampas de intercepción (pitfall traps) en una reserva del Chaco semiárido en el centro de Argentina. Acta Entomol Chile. 1998;22:57–62.
  • Rusch A, Valantin-Morison M, Sarthou JP, et al. Biological control of insect pests in agroecosystems. Effects of crop management, farming systems, and seminatural habitats at the landscape scale: a review. Adv Agron. 2010;109:219–260.
  • Rubio GD, Baigorria JEM, Scioscia CL. Arañas Saltícidas de Misiones: guía para la identificación: tribus basales. 1a Ed. ampliada. Ciudad Autónoma de Buenos Aires: Universidad Maimónides: Ediciones Fundación Azara; 2018.
  • Montero GA, Carnevale NJ, Magra G. Ensambles estacionales de artrópodos epigeos en un bosque de quebracho (Schinopsis balansae) en el Chaco Húmedo. Rev Colomb Entomol. 2011;37(2):294–304.
  • Ruzicka V. Biodiagnostic evaluation of epigeic spider communities. Ekol (CSSR). 1987;6(4):345–357.
  • Sánchez-Ruiz A. Efecto de los cambios en el uso del suelo sobre la fauna de arañas (Arachnida, Araneae) en el macizo montañoso Sagua-Baracoa (Cuba). AvaCient. 2001;32:3–12.
  • Samu F, Szinetár C. On the nature of agrobiont spiders. J Arachnol. 2002;30(2):389–402.
  • Thorbek P, Bilde T. Reduced numbers of generalist arthropod predators after crop management. J App Ecol. 2004;41(3):526–538.
  • Schmidt M, Tscharntke T. Landscape context of sheetweb spider (Araneae: linyphiidae) abundance in cereal fields. J Biogeogra. 2005;32(3):467–473.
  • Ali AD, Reagan TE. Influence of selected weed control practices on araneid faunal composition and abundance in sugarcane. Environ Entomol. 1986;15(3):527–531.
  • Easwaramoorthy S, David H, Kurup NK, et al. Studies on the spider fauna of sugarcane ecosystem in Southern peninsular India. J Biol Control. 1994;8(2):85–93.
  • Rajeswaran J, Duraimurugan P, Shanmugam P. Role of spiders in agriculture and horticulture ecosystem. J Food Agric Environ. 2005;3:147–152.
  • Malik S, Ursani TJ, Khokhar JA, et al. Spider guilds in the sugarcane fields of two districts of Sindh, Pakistan. Int J Zool Stud. 2018;3(6):8–11.
  • Dippenaar-Schoeman AS, van den Berg AM, Haddad CR, et al. Current knowledge of spiders in South Africa agroecosystems (Arachnida: araneae). T R Soc S Afr. 2013;68(1):57–74.
  • Moya MI, Meneses RI, Sarmiento J. Historia natural de un valle en Los Andes: la Paz. Segunda edición. La Paz: Bolivia: Museo Nacional de Historia Natural; 2015.
  • Agüero J, Galati B, Torretta J. Structure and ultrastructure of floral nectaries of two Opuntia species (Cactaceae) in relation to their floral visitors. Plant Syst Evol. 2018;304(8):1057–1067.
  • Grez AA. El valor de los Fragmentos pequeños de bosque maulino en la conservación de la fauna de coleópteros epigeos. In: Smith-Ramírez C, Armesto JJ, Valdovinos C, editors. Historia, biodiversidad y ecología de los bosques de la Cordillera de la Costa. Chile: Editorial Universitaria, Santiago; 2005: 565–572 .
  • Flores GE. Tenebrionidae. In: Morrone JJ, Coscarón S, editors. Biodiversidad de artrópodos argentinos: una perspectiva biotaxonómica. Argentina: Ediciones Sur, Buenos Aires; 1998. p. 232–257.
  • Flores GE, Debandi GO, et al. Coleoptera: tenebrionidae. In: Cordo HA, Logarzo G, Braun K, Di Iorio, O editors. Catálogo de insectos fitófagos de la Argentina y sus plantas asociadas. Argentina: Buenos Aires: Sociedad Entomológica Argentina Ediciones; 2004. p. 197–201.
  • Aballay FH, Flores GE, Silvestro VA, et al. An illustrated key to and diagnoses of the species of Tenebrionidae (Coleoptera) associated with decaying carcasses in Argentina. Ann Zool. 2016;66(4):703–726.
  • Si X, Baselga A, Leprieur F, et al. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. J Anim Ecol. 2016;85(2):409–418.
  • Martínez-Morales MA. Nested species assemblages as a tool to detect sensitivity to forest fragmentation: the case of cloud forest birds. Oikos. 2005;108(3):634–642.
  • Gobbi M, Fontaneto D. Biodiversity of ground beetles (Coleoptera: carabidae) in different habitats of the Italian Polowland. Agr Ecosyst Environ. 2008;127(3–4):273–276.
  • McKinney ML. New Pangea: homogenizing the future biosphere. Proc California Acad Sci. 2005;56(1):119–129.
  • Olden JD, Poff NL. Toward a mechanistic understanding and prediction of biotic homogenization. Am Nat. 2003;162(4):442–460.
  • Rooney TP, Wiegmann SM, Rogers DA, et al. Biotic impoverishment and homogenization in unfragmented forest understory communities. Conserv Biol. 2004;18(3):787–798.
  • González-Reyes AX, Rocha AM, Corronca JA, et al. Effect of urbanization on the communities of tardigrades in Argentina. Zool J Linn Soc-Lond. 2020;188(3):900–912.