2,275
Views
155
CrossRef citations to date
0
Altmetric
Articles

Modeling the resilience of critical infrastructure: the role of network dependencies

, , , , &
Pages 153-168 | Received 19 Aug 2016, Accepted 27 Sep 2016, Published online: 22 Dec 2016

References

  • Adachi, T., & Ellingwood, B. R. (2008). Serviceability of earthquake-damaged water systems: Effects of electrical power availability and power backup systems on system vulnerability. Reliability Engineering & System Safety, 93, 78–88.
  • ALA. (2001). Seismic fragility formulations for water Systems: Part 1 – guideline, American lifelines alliance, April, ASCE. Retrieved from http://www.americanlifelinesalliance.org/
  • Alfonso, L., Jonoski, A., & Solomatine, D. (2010). Multiobjective optimization of operational responses for contaminant flushing in water distribution networks. Journal of Water Resources Planning and Management, 136, 48–58. doi:10.1061/(ASCE)0733-9496(2010)136:1(48)
  • Applied Technology Council. (2016). Critical assessment of lifeline system performance: Understanding societal needs in disaster recovery. Gaithersburg, MD: Prepared for US Department of Commerce National Institute of Standards and Technology, Engineering Laboratory. NIST GCR 16-917–39.
  • Ayyub, B. M. (2014). Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making. Risk Analysis, 34, 340–355.10.1111/risa.2014.34.issue-2
  • Bocchini, P., Decò, A., & Frangopol, D. M. (2012). Probabilistic functionality recovery model for resilience analysis. In F. Biondini & D. M. Frangopol (Eds.), Bridge Maintenance, Safety, Management, Resilience and Sustainability (pp. 1920–1927). UK: CRC Press, Taylor and Francis.
  • Bonneau, A. L., & O’Rourke, T. D. (2009). Water supply performance during earthquakes and extreme events. Mceer, 234. Retrieved from http://books.google.com/books/about/Water_supply_performance_during_earthqua.html?id=ifVDAQAAIAAJ&pgis=1
  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., … von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19, 733–752.
  • Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464, 1025–1028.10.1038/nature08932
  • Cavalieri, F., Franchin, P., Gehl, P., & Khazai, B. (2012). Quantitative assessment of social losses based on physical damage and interaction with infrastructural systems. Earthquake Engineering & Structural Dynamics, 41, 1569–1589.
  • Cavalieri, F., Franchin, P., Buriticá Cortés, J. A. M., & Tesfamariam, S. (2014). Models for seismic vulnerability analysis of power networks: Comparative assessment. Computer-Aided Civil and Infrastructure Engineering, 29, 590–607.
  • Chang, S. E. (2014). Infrastructure resilience to disasters. The Bridge, 44, 36–41.
  • Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Seismic resilience of a hospital system. Structure and Infrastructure Engineering, 6, 127–144.10.1080/15732470802663847
  • Cornell, C. (1968). Engineering seismic risk analysis. Bulletin of Seismological Society of America, 58, 1583–1606.
  • Davis, C. A., O’Rourke, T. D., Adams, M. L., & Rho, M. A. (2012). Case study: Los angeles water services restoration following the 1994 northridge earthquake. In Proceedings of 15th world conference earthquake engineering (15WCEE), Lisbon, Portugal. Paper No 364.
  • Didier, M., Sun, L., Ghosh, S., & Stojadinovic, B. (2015). Post-earthquake recovery of a community and its electrical power supply system. In M. Papadrakakis, V. Papadopoulos, & V. Plevris (Eds.), COMPDYN 2015, 5th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering. Crete Island.
  • Didier, M., Grauvogl, B., Steentoft, A., Ghosh, S., & Stojadinovic, B. (2017). Seismic resilience of the Nepalese power supply system during the 2015 Gorkha earthquake. In Proceedings of 16th world conference on earthquake engineering (16WCEE), Santiago, Chile. Paper N° 927.
  • Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods. New York, NY: Wiley.
  • Douglas, J. (2011, April). Ground motion prediction equations 1964–2010, Rpt PEER 2011/102. UC Berkeley: Pacific Earthquake Engineering Research Center.
  • Dudenhoeffer, D. D., Permann, M. R., & Manic, M. (2006). CIMS: A framework for infrastructure interdependency modeling and analysis. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, & R. M. Fujimoto (Eds.), Proceedings of the 2006 winter simulation conference (pp. 478–485). doi:10.1109/WSC.2006.323119
  • Ellingwood, B. R. (2016). The centerville virtual community: A fully integrated decision model of interacting physical and social infrastructure systems. Sustainable and Resilient Infrastructure. Under review.
  • Eusgeld, I., Kröger, W., Sansavini, G., Schläpfer, M., & Zio, E. (2009). The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures. Reliability Engineering & System Safety, 94, 954–963.
  • FEMA. (2003). Multi-hazard loss estimation methodology, earthquake model, HAZUS-MH 2.1 Technical Manual, 1–699. Washington, DC: Federal Emergency Management Agency.
  • Fernandez, J. A., & Rix, G. J. (2006, April). Soil attenuation relationships and seismic hazard analyses in the Upper Mississippi Embayment. Proceedings of the 8th US National Conference on Earthquake Engineering, San Francisco, California, 18–22. Paper No. 521.
  • Franchin, P. (2014). A computational framework for systemic seismic risk analysis of civil infrastructural systems. In K. Pitilakis, P. Franchin, B. Khazai, & H. Wenzel (Eds.), SYNER-G: Systemic seismic vulnerability and risk assessment of complex urban, utility, lifeline systems and critical facilities (pp. 23–56). Dordrecht: Springer. doi:10.1007/978-94-017-8835-9_2
  • Franchin, P., & Cavalieri, F. (2015). Probabilistic assessment of civil infrastructure resilience to earthquakes. Computer-Aided Civil and Infrastructure Engineering, 30, 583–600.
  • Engineering Systems (G&E). (1994). NIBS earthquake loss estimation methods. Technical Manual (Electric Power Systems), R23, 1–68.
  • Gardoni, P., Der Kiureghian, A., & Mosalam, K. M. (2002). Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, 128, 1024–1038. doi:10.1061/(ASCE)0733-9399(2002)128:10(1024)
  • Gardoni, P., Mosalam, K. M., & Der Kiureghian, A. (2003). Probabilistic seismic demand models and fragility estimates for RC bridges. Journal of Earthquake Engineering, 7, 79–106.
  • Gardoni, P., & LaFave, J. M. (2016). Multi-hazard approaches to civil infrastructure engineering: Mitigating risks and promoting resilience. In P. Gardoni, & J. M. LaFave (Eds.), Multi-hazard Approaches to Civil Infrastructure Engineering (pp. 3–12). Switzerland: Springer International Publishing. doi:10.1007/978-3-319-29713-2
  • Grigg, N. S. (2002). Surviving disasters: Learning from experience. American Water Works Association, 95, 64–75.
  • Grigg, N. S. (2003). Water utility security: Multiple hazards and multiple barriers. Journal of Infrastructure Systems, 9, 81–88. doi:10.1061/(ASCE)1076-0342(2003)9:2(81)
  • Guidorzi, M., Franchini, M., & Alvisi, S. (2009). A multi-objective approach for detecting and responding to accidental and intentional contamination events in water distribution systems. Urban Water Journal, 6, 115–135. doi:10.1080/15730620802566836
  • Guidotti, R., Gardoni, P., & Chen, Y. (2016). Network reliability analysis with link and nodal weights, and auxiliary nodes. Structural Safety. doi:10.1016/j.strusafe.2016.12.001.
  • Guikema, S., & Gardoni, P. (2009). Reliability estimation for networks of reinforced concrete bridges. ASCE Journal of Infrastructure Systems, 15, 61–69.10.1061/(ASCE)1076-0342(2009)15:2(61)
  • Javanbarg, M. B., & Takada, S. (2010). Seismic reliability assessment of water supply systems. In H. Furuta, D. M. Frangopol, & M. Shinozuka (Eds.), Safety, reliability and risk of structures infrastructures and engineering systems (pp. 3455–3462). London: Taylor & Francis Group.
  • Jia, G., Tabandeh, A., & Gardoni, P. (2016). Life-cycle analysis of engineering systems: Modeling deterioration, instantaneous reliability, and resilience. In P. Gardoni (Ed.), Risk and Reliability Analysis: Theory and Applications. Switzerland: Springer.
  • Kang, W.-H., Song, J., & Gardoni, P. (2008). Matrix-based system reliability method and applications to bridge networks. Reliability Engineering and System Safety, 93, 1584–1593.10.1016/j.ress.2008.02.011
  • Kim, Y. S., Spencer, B. F., Jr, Song, J., Elnashai, A. S., & Stokes, T. (2007). Seismic performance assessment of interdependent lifeline systems. MAE Center CD Release 0716. Retrieved from http://mae.cee.illinois.edu/publications/reports/Report07-16.pdf
  • Kumar, J., Brill, E. D., Mahinthakumar, G., & Ranjithan, R. (2010). Identification of reactive contaminant sources in a water distribution system under the conditions of data uncertainties. Proceedings of the world environmental & water resources congress, challenges of change, Tucson, AZ, USA (pp. 4347–4356).
  • Kurtz, N., Song, J., & Gardoni, P. (2015). Seismic reliability analysis of deteriorating representative US West Coast bridge transportation networks. ASCE Journal of Structural Engineering, 142, C4015010 (1–11). doi:10.1061/(ASCE)ST.1943-541X.0001368
  • Lee, E. E., Mitchell, J. E., & Wallace, W. A. (2007). Restoration of services in interdependent infrastructure systems: A network flows approach. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 37, 1303–1317. doi:10.1109/TSMCC.2007.905859
  • Lee, Y.-J., Song, J., Gardoni, P., & Lim, H.-W. (2011). Post-hazard flow capacity of bridge transportation networks considering structural deterioration of bridges. Structure and Infrastructure Engineering, 7, 509–521.10.1080/15732479.2010.493338
  • Loggins, R. A., Wallace, W. A., & Cavdaroglu, B. (2013). MUNICIPAL: A decision technology for the restoration of critical infrastructures. Industrial and systems engineering research conference, Norcross, GA, USA (pp. 1767–1776).
  • Modaressi, H., Desramaut, N., & Gehl, P. (2014). Specification of the vulnerability of physical systems. In K. Pitilakis, P. Franchin, B. Khazai, & H. Wenzel (Eds.), SYNER-G: Systemic seismic vulnerability and risk assessment of complex Urban, utility, lifeline systems and critical facilities (pp. 131–184). Netherlands: Springer.
  • Nan, C., & Sansavini, G. (2015). Multilayer hybrid modeling framework for the performance assessment of interdependent critical infrastructures. International Journal of Critical Infrastructure Protection, 10, 18–33.10.1016/j.ijcip.2015.04.003
  • NJDEP. (2016). Water main break guidance manual. Trenton: New Jersey Department of Environmental Protection, Division of Water Supply & Geoscience Mail Code 401-04Q P.O. Box 420 Trenton NJ. Retrieved from http://www.nj.gov/dep/watersupply/pdf/wmb-guidance.pdf
  • O’Rourke, M. J., & Ayala, G. (1993). Pipeline damage due to wave propagation. Journal of Geotechnical Engineering, 119, 1490–1498.10.1061/(ASCE)0733-9410(1993)119:9(1490)
  • O’Rourke, M. J., & Deyoe, E. (2004). Seismic damage to segmented buried pipe. Earthquake Spectra, 20, 1167–1183. doi:10.1193/1.1808143
  • Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering & System Safety, 121, 43–60.10.1016/j.ress.2013.06.040
  • Ouyang, M., Pan, Z., Hong, L., & He, Y. (2015). Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China. Reliability Engineering & System Safety, 142, 248–257.10.1016/j.ress.2015.05.013
  • Pathirana, A. (2010). EPANET2 desktop application for pressure driven demand modeling. Water Distribution Systems Analysis, 2005, 65–74. doi:10.1061/41203(425)8
  • PCCIP. (1997, October). Critical foundations: Protecting America’s infrastructures, the report of the president’s commission on critical infrastructure protection. Retrieved from https://www.fas.org/sgp/library/pccip.pdf
  • PPD-21. (2013, February 12). Presidential policy directive/PPD-21 – Critical infrastructure security and resilience. Washington, DC: The White House.
  • Piller, O., & Van Zyl, J. E. (2009). Pressure-driven analysis of network sections supplied via high-lying nodes. In J. Boxall & C. Maksimovic (Eds.), Proceedings of the computing and control in the water industry, integrating water systems (pp. 257–262). London: Taylor & Francis Group.
  • Pires, J. A., Ang, A. H.-S., & Villaverde, R. (1996). Seismic reliability of electrical power transmission systems. Nuclear Engineering and Design, 160, 427–439. doi:10.1016/0029-5493(95)01119-6
  • Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine, 21, 11–25. doi:10.1109/37.969131
  • Rossman, L. A. (2000). EPANET 2: Users manual. Cincinnati US Environmental Protection Agency National Risk Management Research Laboratory, 38, 1–200. doi:10.1177/0306312708089715
  • Sharma, N., Tabandeh, A., & Gardoni, P. (2016). Resilience analysis: A mathematical formulation to model resilience of engineering systems. Sustainable and Resilient Infrastructure (submitted).
  • Shi, P. & O’Rourke, T. D. (2008). Seismic response modeling of water supply systems. Mceer-08-0016, 352. Retrieved from https://mceer.buffalo.edu/publications/catalog/reports/Seismic-Response-Modeling-of-Water-Supply-Systems-MCEER-08-0016.html
  • Sun, L., Didier, M., Delé, E., & Stojadinovic, B. (2015). Probabilistic demand and supply resilience model for electric power supply system under seismic hazard. 12th international conference on applications of statistics and probability in civil engineering, ICASP12, Vancouver, Canada (pp. 1–8).
  • Tabucchi, T., Davidson, R., & Brink, S. (2010). Simulation of post-earthquake water supply system restoration. Civil Engineering and Environmental Systems, 27, 263–279. doi:10.1080/10286600902862615
  • Titi, A., Biondini, F., & Frangopol, D. M. (2015). Seismic resilience of deteriorating concrete structures. In N. Ingraffea & N. Libby (Eds.), Structures Congress 2015 (pp. 1649–1660). Reston, VA: ASCE.
  • Todini, E. (2003). A more realistic approach to the “extended period simulation” of water distribution networks. In C. Maksimovic, D. Butler, & F. A. Memon (Eds.), Advances in Water Supply Management, (pp. 173–184). Lisse, The Netherlands: Balkema.
  • Trifunovic, N. (2012). Pattern recognition for reliability assessment of water distribution networks. CRC Press (PhD thesis). UNESCO-IHE Institute for Water Education, Delft University of Technology.
  • USEPA. (2002). New or repaired water mains. US environmental protection agency, office of ground water and drinking water, standards and risk management division, 1200 Pennsylvania Ave., NW Washington DC 20004. Retrieved from https://www.epa.gov/sites/production/files/2015-09/documents/neworrepairedwatermains.pdf
  • Vanzi, I. (1996). Seismic reliability of electric power networks: Methodology and application. Structural Safety, 18, 311–327. doi:10.1016/S0167-4730(96)00024-0
  • Vespignani, A. (2010). Complex networks: The fragility of interdependency. Nature, 464, 984–985.10.1038/464984a
  • Wen, R. Z., Sun, B. T., & Zhou, B. F. (2011). Field survey of Mw 8.8 Feb. 27, 2010 Chile earthquake and Tsunami. In Advanced Materials Research, 250–253, 2102–2106.
  • Wallace, W. A., Mendonca, D. M., Lee, E. E., Mitchell, J. E., & Chow Wallace, J. H. (2003). Managing disruptions to critical interdependent infrastructures in the context of the 2001 world trade center attack. In J. L. Monday (Ed.), Beyond September 11th: An account of post-disaster research, (pp. 165–198). #39. Boulder, CO: Natural Hazards Research and Applications Information Center, University of Colorado.
  • Wang, Y. (2006). Seismic performance evaluation of water supply systems (PhD dissertation). Cornell University, Ithaca.
  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.10.1038/30918
  • Zhang, P., & Peeta, S. (2011). A generalized modeling framework to analyze interdependencies among infrastructure systems. Transportation Research Part B: Methodological, 45, 553–579. doi:10.1016/j.trb.2010.10.001
  • Zimmerman, R. (2001). Social implications of infrastructure network interactions. Journal of Urban Technology, 8, 97–119. doi:10.1080/106307301753430764

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.