2,191
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Combining recorded failures and expert opinion in the development of ANN pipe failure prediction models

ORCID Icon, ORCID Icon, , &
Pages 86-108 | Received 25 Nov 2019, Accepted 19 Jun 2020, Published online: 14 Jul 2020

References

  • Achim, D., Ghotb, F., & McManus, K. (2007). Prediction of water pipe asset life using neural networks. Journal of Infrastructure Systems, 13(1), 26–30. doi:10.1061/(ASCE)1076-0342(2007)13:1(26)
  • Adey, B. T. (2019). A road infrastructure asset management process: Gains in efficiency and effectiveness. Infrastructure Asset Management, 6(1), 2–14. doi:10.1680/jinam.17.00018
  • Adey, B. T., Richmond, C., & García de Soto, B. (2017). Infrastructure management 2: Evaluation tools. ETH Zurich: Course script. Infrastructure Management.
  • Ahn, J., Lee, S., Lee, G., & Koo, J. (2005). Predicting water pipe breaks using neural network. Water Science and Technology: Water Supply, 5(3–4), 159–172.
  • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265. doi:10.1093/biomet/60.2.255
  • Al-Barqawi, H., & Zayed, T. (2006). Condition rating model for underground infrastructure sustainable water mains. Journal of Performance of Constructed Facilities, 20(2), 126–135. doi:10.1061/(ASCE)0887-3828(2006)20:2(126)
  • Allweyer, T. (2016). BPMN 2.0: Introduction to the standard for business process modeling, BoD-Books on Demand.
  • Amaitik, N. M., & Amaitik, S. M. (2010). Prediction of pipe failures in water mains using artificial neural network models.
  • Asnaashari, A., McBean, E. A., Gharabaghi, B., & Tutt, D. (2013). Forecasting watermain failure using artificial neural network modelling. Canadian Water Resources Journal, 38(1), 24–33. doi:10.1080/07011784.2013.774153
  • Bishop, C. (2007). Pattern recognition and machine learning (Information Science and Statistics) (1st edn. 2006. corr. 2nd printing ed.). New York: Springer.
  • Caradot, N., Riechel, M., Fesneau, M., Hernandez, N., Torres, A., Sonnenberg, H. & Rouault, P. (2018). Practical benchmarking of statistical and machine learning models for predicting the condition of sewer pipes in Berlin, Germany. Journal of Hydroinformatics, 20(5), 1131–1147. doi:10.2166/hydro.2018.217
  • Castanedo, F. (2013). A review of data fusion techniques. The Scientific World Journal, 2013, 1–19. doi:10.1155/2013/704504
  • Christodoulou, S., Aslani, P., & Vanrenterghem, A. (2003). A risk analysis framework for evaluating structural degradation of water mains in urban settings, using neurofuzzy systems and statistical modeling techniques. World Water & Environmental Resources Congress 2003. Reston, VA, USA: ASCE.
  • Christodoulou, S., & Deligianni, A. (2010). A neurofuzzy decision framework for the management of water distribution networks. Water Resources Management, 24(1), 139–156. doi:10.1007/s11269-009-9441-2
  • Cooke, R. (1991). Experts in uncertainty: Opinion and subjective probability in science. New York, New York: Oxford University Press.
  • DVGW, W. (2006). 400-3: Technische Regeln Wasserverteilungsanlagen, Teil 3: Betrieb und Instandhaltung. Deutscher Verein des Gas-und Wasserfaches eV Bonn.
  • Eisenbeis, P. (1994). Modelisation statistique de la prevision des defaillances des conduites d’eau potable (Doctoral Thesis. Strasbourg 1.
  • Folkman, S. (2018). Water main break rates in the USA and Canada: A comprehensive study. Mechanical and Aerospace Engineering Faculty Publication. https://digitalcommons.usu.edu/mae_facpub/174
  • García de Soto, B., Adey, B. T., & Fernando, D. (2014). A process for the development and evaluation of preliminary construction material quantity estimation models using backward elimination regression and neural networks. Journal of Cost Analysis and Parametrics, 7(3), 180–218. doi:10.1080/1941658X.2014.984880
  • García de Soto, B., Adey, B. T., & Fernando, D. (2017). A hybrid methodology to estimate construction material quantities at an early project phase. International Journal of Construction Management, 17(3), 165–196. doi:10.1080/15623599.2016.1176727
  • García de Soto, B., Bumbacher, A., Deublein, M., & Adey, B. T. (2018). Predicting road traffic accidents using artificial neural network models. Infrastructure Asset Management, 5(4), 1–13. doi: 10.1680/jinam.17.00028
  • Geem, Z. W., Tseng, C.-L., Kim, J., & Bae, C. (2007). Trenchless water pipe condition assessment using artificial neural network. Pipelines 2007: Advances and Experiences with Trenchless Pipeline Projects, 1–9. https://ascelibrary.org/action/showCitFormats?doi=10.1061%2F40934%28252%2926
  • Goulter, I. C., & Kazemi, A. (1988). Spatial and temporal groupings of water main pipe breakage in Winnipeg. Canadian Journal of Civil Engineering, 15(1), 91–97. doi:10.1139/l88-010
  • Gressmann, M. (2020). PE-Rohrleitungen - seit Jahrzehnten bewährt. Aqua & Gas, 2020(3), 46–51.
  • Grigg, N. S. (2009). National mains failure database project. Great Rivers: World Environmental and Water Resources Congress 2009.
  • Harvey, R., McBean, E. A., & Gharabaghi, B. (2014). Predicting the timing of water main failure using artificial neural networks. Journal of Water Resources Planning and Management, 140(4), 425–434. doi:10.1061/(ASCE)WR.1943-5452.0000354
  • Hessel, V. D. J. (2007). 100 Jahre Nutzungsdauer von Rohren aus Polyethylen. Rückblick und Perspektiven, 3R international, 46, 242–246.
  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. doi:10.1016/0893-6080(89)90020-8
  • Hu, Y., & Hubble, D. (2007). Factors contributing to the failure of asbestos cement water mains. Canadian Journal of Civil Engineering, 34(5), 608–621. doi:10.1139/l06-162
  • Infraguide. (2002). Deterioration and inspection of water distribution systems. Ottawa, Canada: Federation of Canadian Municipalities and National Research Council.
  • Jafar, R., Shahrour, I., & Juran, I. (2007). Modelling the structural degradation in water distribution systems using the artificial neural networks (ANN). Water Asset Management International, 3(3), 14–18.
  • Jafar, R., Shahrour, I., & Juran, I. (2010). Application of Artificial Neural Networks (ANN) to model the failure of urban water mains. Mathematical and Computer Modelling, 51(9–10), 1170–1180. doi:10.1016/j.mcm.2009.12.033
  • Kabir, G. (2016). Planning repair and replacement program for water mains: A Bayesian framework. Vancouver, Canada: University of British Columbia.
  • Kabir, G., Demissie, G., Sadiq, R., & Tesfamariam, S. (2015a). Integrating failure prediction models for water mains: Bayesian belief network based data fusion. Knowledge-Based Systems, 85, 159–169. doi:10.1016/j.knosys.2015.05.002
  • Kabir, G., Tesfamariam, S., Hemsing, J., & Sadiq, R. (2019). Handling incomplete and missing data in water network database using imputation methods. Sustainable and Resilient Infrastructure, 1–13. doi:10.1080/23789689.2019.1600960
  • Kabir, G., Tesfamariam, S., Loeppky, J., & Sadiq, R. (2015b). Integrating Bayesian linear regression with ordered weighted averaging: Uncertainty analysis for predicting water main failures. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1(3), 04015007. doi:10.1061/AJRUA6.0000820
  • Kerwin, S., García de Soto, B., & Adey, T. B. (2018) Performance comparison for pipe failure prediction using artificial neural networks. Paper presented at the IALCCE 2018, Ghent, Belgium.
  • Kettler, A., & Goulter, I. (1985). An analysis of pipe breakage in urban water distribution networks. Canadian Journal of Civil Engineering, 12(2), 286–293. doi:10.1139/l85-030
  • Kimutai, E., Betrie, G., Brander, R., Sadiq, R., & Tesfamariam, S. (2015). Comparison of statistical models for predicting pipe failures: Illustrative example with the city of calgary water main failure. Journal of Pipeline Systems Engineering and Practice, 6(4), p 04015005. Retrieved from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29PS.1949-1204.0000196
  • Kleiner, Y., Nafi, A., & Rajani, B. (2010). Planning renewal of water mains while considering deterioration, economies of scale and adjacent infrastructure. Water Science and Technology: Water Supply, 10(6), 897–906.
  • Kleiner, Y., & Rajani, B. (2001). Comprehensive review of structural deterioration of water mains: Statistical models. Urban Water, 3(3), 131–150. doi:10.1016/S1462-0758(01)00033-4
  • Kutyłowska, M. (2015). Neural network approach for failure rate prediction. Engineering Failure Analysis, 47, 41–48. doi:10.1016/j.engfailanal.2014.10.007
  • Kutyłowska, M. (2017). Comparison of two types of artificial neural networks for predicting failure frequency of water conduits. Periodica Polytechnica Civil Engineering, 61(1), 1–6.
  • Le Gat, Y., & Eisenbeis, P. (2000). Using maintenance records to forecast failures in water networks. Urban Water, 2(3), 173–181. doi:10.1016/S1462-0758(00)00057-1
  • Lin, P., & Yuan, -X.-X. (2019). A two-time-scale point process model of water main breaks for infrastructure asset management. Water Research, 150, 296–309. doi:10.1016/j.watres.2018.11.066
  • Liu, Z., Kleiner, Y., Rajani, B., Wang, L., & Condit, W. (2012). Condition assessment technologies for water transmission and distribution systems. United States Environmental Protection Agency (EPA), 108. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=241510
  • Mailhot, A., Pelletier, G., Noël, J. F., & Villeneuve, J. P. (2000). Modeling the evolution of the structural state of water pipe networks with brief recorded pipe break histories: Methodology and application. Water Resources Research, 36(10), 3053–3062. doi:10.1029/2000WR900185
  • Makar, J., Desnoyers, R., & McDonald, S. (2001). Failure modes and mechanisms in gray cast iron pipe. Underground Infrastructure Research, 1–10. https://nrc-publications.canada.ca/eng/view/object/?id=916578d5-55d7-4dde-8e8f-b480487bdb1c
  • MATLAB. (2018). Neural network toolbox. Retrieved from https://ch.mathworks.com/de/products/neural-network.html.
  • MATLABa. (2018). Matlab documentation, Levenberg-Marquardt backpropagation. Retrieved from https://ch.mathworks.com/help/nnet/ref/trainlm.html.
  • MATLABb. (2018). Matlab documentation, Scaled conjugate gradient. Retrieved from https://ch.mathworks.com/help/nnet/ref/trainscg.html?searchHighlight=conjugate%20gradient&s_tid=doc_srchtitle.
  • Mitchell, T. M., (1997). Machine Learning. New York, NY: Mcgraw-hill science. Engineering/Math, 1.
  • Najafi, M., & Kulandaivel, G. (2005). Pipeline condition prediction using neural network models. Pipelines 2005: Optimizing Pipeline Design, Operations, and Maintenance in Today’s Economy, 767–781. https://ascelibrary.org/action/showCitFormats?doi=10.1061%2F40800%28180%2961
  • Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1–2), 135–150. doi:10.1016/S0304-3800(02)00064-9
  • Olden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178(3–4), 389–397. doi:10.1016/j.ecolmodel.2004.03.013
  • Pelletier, G., Mailhot, A., & Villeneuve, J.-P. (2003). Modeling water pipe breaks—Three case studies. Journal of Water Resources Planning and Management, 129(2), 115–123. doi:10.1061/(ASCE)0733-9496(2003)129:2(115)
  • Rajani, B., & Kleiner, Y. (2001). Comprehensive review of structural deterioration of water mains: Physically based models. Urban Water, 3(3), 151–164. doi:10.1016/S1462-0758(01)00032-2
  • Rajani, B., & Makar, J. (2000). A methodology to estimate remaining service life of grey cast iron water mains. Canadian Journal of Civil Engineering, 27(6), 1259–1272. doi:10.1139/l00-073
  • Rajani, B., & Tesfamariam, S. (2007). Estimating time to failure of cast-iron water mains. Proceedings of the Institution of Civil Engineers - Water Management, 160(2), 83–88. doi:10.1680/wama.2007.160.2.83
  • Renaud, E., De Massiac, J., Bremond, B., & Laplaud, C. (2009). SIROCO, a decision support system for rehabilitation adapted for small and medium size water distribution companies. Strategic Asset Management of Water Supply and Wastewater Infrastructures, 329–344. London, UK: IWA Publishing.
  • Rogers, P. D., & Grigg, N. S. (2009). Failure assessment modeling to prioritize water pipe renewal: Two case studies. Journal of Infrastructure Systems, 15(3), 162–171. Retrieved from https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291076-0342%282009%2915%3A3%28162%29
  • Røstum, J. (2000). Statistical modelling of pipe failures in water networks (Doctoral thesis). Norwegian University of Science and Technology.
  • Sacluti, F. R. (1999). Modelling water distribution pipe failures using artificial neural networks. Edmonton, Canada: University of Alberta.
  • Sattar, A. M., Ertuğrul, Ö. F., Gharabaghi, B., McBean, E. A., & Cao, J. (2019). Extreme learning machine model for water network management. Neural Computing & Applications, 31(1), 157–169. doi:10.1007/s00521-017-2987-7
  • Scheidegger, A., Leitão, J. P., & Scholten, L. (2015). Statistical failure models for water distribution pipes–A review from a unified perspective. Water Research, 83, 237–247. doi:10.1016/j.watres.2015.06.027
  • Scheidegger, A., Scholten, L., Maurer, M., & Reichert, P. (2013). Extension of pipe failure models to consider the absence of data from replaced pipes. Water Research, 47(11), 3696–3705. doi:10.1016/j.watres.2013.04.017
  • Scholten, L., Scheidegger, A., Reichert, P., & Maurer, M. (2013). Combining expert knowledge and local data for improved service life modeling of water supply networks. Environmental Modelling and Software, 42, 1–16. doi:10.1016/j.envsoft.2012.11.013
  • Shamir, U., & Howard, C. D. D. (1979). An analytic approach to scheduling pipe replacement. Journal - American Water Works Association, 71(5), 248–258. doi:10.1002/j.1551-8833.1979.tb04345.x
  • Snider, B., & McBean, E. A. (2018). Improving time to failure predictions for water distribution systems using extreme gradient boosting algorithm. WDSA/CCWI Joint Conference Proceedings, Kingston, Ontario, Canada.
  • Snider, B., & McBean, E. A. (2019). Improving urban water security through pipe-break prediction models: Machine learning or survival analysis. Journal of Environmental Engineering, 146(3), 04019129. doi:10.1061/(ASCE)EE.1943-7870.0001657
  • SVGW. (2012). Standard on water distribution (W4) Part 4: Operation and maintenance.
  • SVGW. (2014). Statistische Erhebungen der Wasserversorgungen in der Schweiz Betriebsjahr 2013. Zürich.
  • SVGW. (2015a). Branchenbericht des schweizerischen Wasserversorgung. Zürich.
  • SVGW. (2015b). Statistische Erhebungen der Wasserversorgungen in der Schweiz Betriebsjahr 2014. Zürich.
  • SVGW. (2016). Statistische Erhebungen der Wasserversorgungen in der Schweiz Betriebsjahr 2015. Zürich.
  • SVGW. (2017). Statistische Erhebungen der Wasserversorgungen in der Schweiz Betriebsjahr 2016. Zürich.
  • SVGW. (2018). Statistische Erhebungen der Wasserversorgungen in der Schweiz Betriebsjahr 2017. Zürich.
  • SVGW. (2019). Statistische Erhebungen der Wasserversorgungen in der Schweiz Betriebsjahr 2018. Zürich.
  • Switzerland, S. S. S. O. (2010). Soil classification in Switzerland. Switzerland: Soil Science Society of Switzerland. Retrieved from http://www.soil.ch/cms/fr/publications/classification/
  • Tabesh, M., Soltani, J., Farmani, R., & Savic, D. (2009). Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling. Journal of Hydroinformatics, 11(1), 1–17. Retrieved from http://jh.iwaponline.com/content/ppiwajhydro/11/1/1.full.pdf
  • Tscheikner-Gratl, F., Caradot, N., Cherqui, F., Leitão, J. P., Ahmadi, M., Langeveld, J. G., & Rodríguez, J. P. (2019). Sewer asset management–state of the art and research needs. Urban Water Journal, 16(9), 662–675. doi:10.1080/1573062X.2020.1713382
  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. doi:10.1126/science.185.4157.1124
  • van Riel, W., Langeveld, J., Herder, P., & Clemens, F. (2017). The influence of information quality on decision-making for networked infrastructure management. Structure and Infrastructure Engineering, 13(6), 696–708. doi:10.1080/15732479.2016.1187633
  • van Riel, W., van Bueren, E., Langeveld, J., Herder, P., & Clemens, F. (2016). Decision-making for sewer asset management: Theory and practice. Urban Water Journal, 13(1), 57–68. doi:10.1080/1573062X.2015.1011667
  • vonRoll. (2020). Pipes and fittings. Retrieved from https://www.vonroll-hydro.world/files/content/downloads/Broschueren/rohre-und-formstuecke/ecopur/191007_vonRoll_ECOPUR_EN.pdf.
  • Wallerath, M., & Wehr, R. (2014). Neubestimmung der technischen Nutzungsdauer von Rohrleitungen. DVGW energie: wasser-praxis, 7/8, 30–36.
  • Wang, Y., Moselhi, O., & Zayed, T. (2009). Study of the suitability of existing deterioration models for water mains. Journal of Performance of Constructed Facilities, 23(1), 47–54. doi:10.1061/(ASCE)0887-3828(2009)23:1(47)
  • Wilson, D., Filion, Y., & Moore, I. (2017). State-of-the-art review of water pipe failure prediction models and applicability to large-diameter mains. Urban Water Journal, 14(2), 173–184. doi:10.1080/1573062X.2015.1080848
  • Winkler, D., Haltmeier, M., Kleidorfer, M., Rauch, W., & Tscheikner-Gratl, F. (2018). Pipe failure modelling for water distribution networks using boosted decision trees. Structure and Infrastructure Engineering, 14(10), 1402–1411. doi:10.1080/15732479.2018.1443145
  • Wüst, J., Wenzel, M., Scholten, F., Wolters, M., Heinemann, J., & Bockenheimer, A. (2010). Integrität von PE-Gas-und Wasserleitungen der ersten Generation. 3 R International: zeitschrift fuer die Rohrleitungspraxis, 49(10), 534.
  • Yuan, -X.-X. (2016). Principles and guidelines of deterioration modelling for water and waste water assets. Infrastructure Asset Management, 4(1), 19–35. doi:10.1680/jinam.16.00017