2,991
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Durability-based design: the European perspective

ORCID Icon, ORCID Icon &
Pages 169-184 | Received 21 Sep 2020, Accepted 23 Jun 2021, Published online: 02 Aug 2021

References

  • Angst, U. (2018). The importance of the size effect in corrosion of steel in concrete for probabilistic service life modeling. In: 6th International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), pp.1313–1319, Ghent, Belgium London: CRC Press/Balkema.
  • Angst, U., Boschmann, C., Wagner, M., & Elsener, B. (2017). Experimental protocol to determine the chloride threshold value for corrosion in samples taken from reinforced concrete structures. Journal of Visualized Experiments: JoVE, 126, 56229. doi:10.3791/56229
  • Angst, U., & Büchler, M. (2015). On the applicability of the Stern–Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion. Materials and Corrosion, 66(10), 1017–1028. doi:10.1002/maco.201407997
  • Angst, U., & Elsener, B. (2017). The size effect in corrosion greatly influences the predicted life span of concrete infrastructures. Sci Adv, 3(8), e1700751. doi:10.1126/sciadv.1700751
  • Angst, U., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2009). Critical chloride content in reinforced concrete – A review. Cement and Concrete Research, 39(12), 1122–1138. doi:10.1016/j.cemconres.2009.08.006
  • Angst, U., Geiker, M. R., Alonso, M. C., Polder, R., Isgor, O. B., Elsener, B., Wong, H., Michel, A., Hornbostel, K., Gehlen, C., François, R., Sanchez, M., Criado, M., Sørensen, H., Hansson, C., Pillai, R., Mundra, S., Gulikers, J., Raupach, M., Pacheco, J., & Sagüés, A. (2019). The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: A critical review by RILEM TC 262-SCI. Materials and Structures, 52(4), 88. doi:10.1617/s11527-019-1387-0
  • Angst, U., Hooton, R. D., Marchand, J., Page, C. L., Flatt, R. J., Elsener, B., Gehlen, C., & Gulikers, J. (2012). Present and future durability challenges for reinforced concrete structures. Materials and Corrosion, 63(12), 1047–1051. doi:10.1002/maco.201206898
  • Angst, U., Moro, F., Geiker, M. R., Kessler, S., Beushausen, H., Andrade, C., Lahdensivu, J., Köliö, A., Imamoto, K., von Greve‐Dierfeld, S., & Serdar, M. (2020). Corrosion of steel in carbonated concrete: Mechanisms, practical experience, and research priorities – A critical review by RILEM TC 281‐CCC. RILEM Technical Letters, (Vol), 5. doi:10.21809/rilemtechlett.2020.127
  • Angst, U., Rønnquist, A., Elsener, B., Larsen, C. K., & Vennesland, Ø. (2011). Probabilistic considerations on the effect of specimen size on the critical chloride content in reinforced concrete. Corrosion Science, 53(1), 177–187. doi:10.1016/j.corsci.2010.09.017
  • Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2013) Corrosion of steel in concrete: Prevention, diagnosis, repair. 2nd. WILEY-VCH, Weinheim; Germany. ISBN: 978-3–527–33146–8
  • Boschmann Käthler, C., Angst, U., Ebell, G., & Elsener, B. (2021). Chloride-induced reinforcement corrosion in cracked concrete: The influence of time of wetness on corrosion propagation. Corrosion Engineering, Science and Technology, 56(1), 1–10. doi:10.1080/1478422X.2020.1789371
  • Breit, W. (2001). Critical corrosion inducing chloride content – State of the art and new investigation results. In Thielen, G., Betontechnische Berichte 1998–2000 (pp. 631–637). Vbt Verlag Bau U. Technik, Erkrath, Nordrhein-Westfalen, Germany.
  • Caspeele, R., Steenbergen, R., & Sykora, M. (2016). Partial factor methods for existing concrete structures, Fédération International du Béton (fib) Bulletin No. 80. Wilhelm Ernst & Sohn, Verlag für Architektur and technische Wissenschaften GmbH & Co. KG. 10.35789/fib.BULL.0080
  • CEN (European Committee for Standardization). (2004). EN–1992–1–1: Eurocode 2, Design of concrete structures – Part 1–1: General rules and rules for buildings.
  • CEN (European Committee for Standardization). (2009). EN 13670: Execution of concrete structures.
  • CEN (European Committee for Standardization). (2013). EN 206: Concrete – Specification, performance, production and conformity.
  • CEN (European Committee for Standardization). (2015). EN 12390–11: Testing hardened concrete – Part 11: Determination of the chloride resistance of concrete, unidirectional diffusion.
  • Crete, D. (2000). DuraCrete – final technical report. general guidelines for durability design and redesign/probabilistic performance based durability design of concrete structures. DuraCrete Report BE93–1347/R17, CUR, Gouda, The Netherlands, 139
  • Danner, T., Hornbostel, K., Strømme, Ø., & Geiker, M. R. (2019). Self-healing and Chloride Ingress in Cracked Cathodically Protected Concrete Exposed to Marine Environment for 33 Years, NTNU, Trondheim. Norway: ISBN. 31. 978–82–7482–119–4
  • Elsener, B. (1999). Corrosion Rate of Steel in Concrete – From Laboratory to Reinforced Concrete Structures. In J. Mietz, B. Elsener, & R. Polder (Eds.), Corrosion of Reinforcement in Concrete – Monitoring, Prevention and Rehabilitation (pp. 125–140). Brussels, Belgium: EFC Publication Nr. 25, CRC Press London. Published as E-book (2020). https://doi.org/10.1201/9781003076957
  • Elsener, B., Andrade, C., Gulikers, J., Polder, R., & Raupach, M. (2003). Half-cell potential measurements – Potential mapping on reinforced concrete structures. Materials and Structures, 36(7), 461–471. doi:10.1007/BF02481526
  • fib (Fédération International du Béton). (2006). fib model code for service life design – bulletin 34, 116.
  • fib (Fédération International du Béton). (In preparation). Modelling of structural performance of existing concrete structures, unpublished fib Bulletin. fib (Fédération International du Béton). (2010). fib 2010 Model Code – Bulletins 55 and 56, 311.
  • Geiker, M. R., Danner, T., Revert, A. B., & Hornbostel, K. (2021). 25 years of field exposure of pre-cracked concrete beams; combined impact of spacers and cracks on reinforcement corrosion. Construction and Building Materials, 286, 122801. doi:10.1016/j.conbuildmat.2021.122801
  • Geiker, M. R., & Edvardsen, C. (2014). Service life design of reinforced concrete structures, developments in the Danish approach. In: Proceedings of the 3rd International Conference on Service Life Design for Infrastructure. Keynote Speech, Zhuhai, China, (pp. 59). Tongji University.
  • Geiker, M. R., Michel, A., Lepech, M. D., Wu, J., & Stang, H. (2017). Multi-scale and multi-physics deterioration modelling for design and assessment of reinforced concrete structures. RILEM Technical Letters, 2, 119–128. doi:10.21809/rilemtechlett.2017.49
  • Geiker, M. R., Michel, A., Stang, H., & Lepech, M. D. (2019). Limit states for sustainable reinforced concrete structures. Cement and Concrete Research, 122, 189–195. doi:10.1016/j.cemconres.2019.04.013
  • Geiker, M. R., Michel, A., Stang, H., Vikan, H., & Lepech, M. (2018). Design and maintenance of concrete structures requires both engineering and sustainability limit states. In: International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), pp. 987–991, Ghent, Belgium, London, CRC Press/Balkema.
  • Helland, S. (2013). Design for service life: Implementation of fib Model Code 2010 rules in the operational code ISO 16204. Structural Concrete, 14(1), 10–18. doi:10.1002/suco.201200021
  • Helland, S. (2016). Performance-based service life design in the 2021 version of the European concrete standards – Ambitions and challenges. Keynote lecture at: fib Conference, Cape Town, South Africa. ISBN. 978–2–88394–121–2
  • ISO (International Organization for Standards). (2012). ISO 16204: Durability – Service Life Design of Concrete Structures.
  • Jakobsen, U. H., De Weerdt, K., & Geiker, M. R. (2016). Elemental zonation in marine concrete. Cement and Concrete Research, 85, 12–27. doi:10.1016/j.cemconres.2016.02.006
  • Kioumarsi, M. M., Hendriks, M. A. N., Kohler, J., & Geiker, M. R. (2016). The effect of interference of corrosion pits on the failure probability of a reinforced concrete beam. Engineering Structures, 114, 113–121. doi:10.1016/j.engstruct.2016.01.058
  • Li, L., & Sagüés, A. A. (2004). Chloride corrosion threshold of reinforcing steel in alkaline solutions – effect of specimen size. Corrosion, 60(2), 195–202. doi:10.5006/1.3287721
  • Markeset, G. (2009). Critical chloride content and its influence on service life predictions. Materials and Corrosion, 60(8), 593–596. doi:10.1002/maco.200905288
  • Matthews, S., Bigaj-van Vliet, A., Walraven, J., Mancini, G., & Dieteren, G. (2018). fib Model Code 2020: Towards a general code for both new and existing concrete structures. Structural Concrete, 19(4), 969–979. doi:10.1002/suco.201700198
  • Polder, R. B., Peelen, W. H. A., & Courage, W. M. G. (2012). Non‐traditional assessment and maintenance methods for aging concrete structures – Technical and non‐technical issues. Materials and Corrosion, 63(12), 1147–1153. doi:10.1002/maco.201206725
  • Revert, A. B., Hornbostel, K., De Weerdt, K., & Geiker, M. R. (2019). Macrocell corrosion in carbonated portland and portland-fly ash concrete – contribution and mechanism. Cement and Concrete Research, 116, 273–283. doi:10.1016/j.cemconres.2018.12.005
  • Rostam, S. (1993). Service life design – The European approach. ACI Concrete International, 15(7), 24–32.
  • Sagoe-Crentsil, K. K., & Glasser, F. P. (1993). “Green rust”, iron solubility and the role of chloride in the corrosion of steel at high pH. Cement and Concrete Research, 23(4), 785–791. doi:10.1016/0008-8846(93)90032-5
  • Schiegg, Y. (2002). Online-Monitoring zur Erfassung der Korrosion der Bewehrung von Stahlbetonbauten, PhD thesis, ETH Zürich. 10.3929/ethz-a-004319266
  • Stefanoni, M., Angst, U., & Elsener, B. (2017). Relative importance of corrosion rate and exposure condition on the practical use of new environmentally friendly binders. In: Proceedings of the 1st International Conference on Construction Materials for Sustainable Future, Zadar, Croatia, 19–21 April 2017, https://www.researchgate.net/publication/320703132
  • Stefanoni, M., Angst, U., & Elsener, B. (2018). Corrosion rate of carbon steel in carbonated concrete – A critical review. Cement and Concrete Research, 103, 35–48. doi:10.1016/j.cemconres.2017.10.007
  • Stefanoni, M., Angst, U., & Elsener, B. (2019). Kinetics of electrochemical dissolution of metals in porous media. Nature Materials, 18(9), 942–947. doi:10.1038/s41563-019-0439-8
  • Stefanoni, M., Angst, U., & Elsener, B. (2020). The mechanism controlling corrosion of steel in carbonated cementitious materials in wetting and drying exposure. Cement and Concrete Composites, 113, 103717. doi:10.1016/j.cemconcomp.2020.103717
  • Tuutti, K. (1982). Corrosion of steel in concrete, PhD thesis, Kungliga Tekniska Högskolan (KTH) in Stockholm. http://lup.lub.lu.se/record/3173286
  • Vassie, P. (1984). Reinforcement corrosion and the durability of concrete bridges. Proceedings of the Institution of Civil Engineers, 76(3), 713–723. doi:10.1680/iicep.1984.1207
  • Von Greve-Dierfeld, S. (2015). Bemessungsregeln zur Sicherstellung der Dauerhaftigkeit XC-exponierter Stahlbetonbauteile, PhD thesis, Technical University of Munich, https://d-nb.info/1079655123/34
  • Von Greve-Dierfeld, S., & Gehlen, C. (2016a). Performance based durability design, carbonation part 1 – Benchmarking of European present design rules. Structural Concrete, 17(3), 309–328. doi:10.1002/suco.201600066
  • Von Greve-Dierfeld, S., & Gehlen, C. (2016b). Performance-based durability design, carbonation part 2 – Classification of concrete. Structural Concrete, 17(4), 523–532. doi:10.1002/suco.201600067
  • Von Greve-Dierfeld, S., & Gehlen, C. (2016c). Performance-based durability design, carbonation part 3: Partial safety factor (PSF) approach and a proposal for revision of deemed-to-satisfy rules. Structural Concrete, 17(5), 718–728. doi:10.1002/suco.201600085
  • Zimmermann, L. (2000). Korrosionsinitiierender Chloridgehalt von Stahl in Beton, PhD thesis, ETH Zürich, 10.3929/ethz-a-004037943