167
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mixed strategy for power grid resilience enhancement under cyberattack

ORCID Icon, ORCID Icon &
Pages 568-588 | Received 15 Nov 2020, Accepted 21 Aug 2021, Published online: 15 Oct 2021

References

  • Albert, R., Albert, I., & Nakarado, G. L. (2004). Structural vulnerability of the North American power grid. Physical Review E, 69(2), 25103. doi:10.1103/PhysRevE.69.025103
  • Barabási, A.-L., & Pósfai, M. (2016). Network science. Cambridge United Kingdom: Cambridge University Press.
  • Berkeley III, A. R., Mike, W., & Constellation, C. 2010. A framework for establishing critical infrastructure resilience goals. Final Report and Recommendations by the Council, National Infrastructure Advisory Council.
  • Bernstein, A., Bienstock, D., Hay, D., Uzunoglu, M., & Zussman, G. 2014. Power grid vulnerability to geographically correlated failures - analysis and control implications. In Proc., IEEE INFOCOM 2014 - IEEE Conference on Computer Communications: 2634–2642. Toronto, ON, Canada. doi:10.1109/INFOCOM.2014.6848211.
  • Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 1170–1182. doi:10.1086/228631
  • Brandes, U., & Daniel, F. (2005). Centrality measures based on current flow. In V. Diekert, B. Durand (Eds.), STACS 2005. Lecture Notes in Computer Science (vol. 3404). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-31856-9_44
  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117. doi:10.1016/S0169-7552(98)00110-X
  • Cetinay, H., Devriendt, K., & van Mieghem, P. (2018). Nodal vulnerability to targeted attacks in power grids. Applied Network Science, 3(1), 34. doi:10.1007/s41109-018-0089-9
  • Cetinay, H., Kuipers, F. A., & van Mieghem, P. (2016). A topological investigation of power flow. IEEE Systems Journal, 12(3), 2524–2532. doi:10.1109/JSYST.2016.2573851
  • Conover, W. J. (1998). Practical nonparametric statistics: Chapter 6: Statistics of the Kolmogorov-Smirnov type. New York, USA: John Wiley & Sons.
  • Ezzeldin, M., & El-Dakhakhni, W. E. (2019). Robustness of Ontario power network under systemic risks. Sustainable and Resilient Infrastructure, 1–20. doi:10.1080/23789689.2019.1666340
  • Fang, J., Su, C., Chen, Z., Sun, H., & Lund, P. (2016). Power system structural vulnerability assessment based on an improved maximum flow approach. IEEE Transactions on Smart Grid, 9(2), 777–785. doi:10.1109/TSG.2016.2565619
  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35. doi:10.2307/3033543
  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. doi:10.1016/0378-8733(78)90021-7
  • Gasser, P., Lustenberger, P., Cinelli, M., Kim, W., Spada, M., Burgherr, P., Hirschberg, S., Stojadinovic, B., & Sun, T. Y. (2019). A review on resilience assessment of energy systems. Sustainable and Resilient Infrastructure, 1–27. doi:10.1080/23789689.2019.1610600
  • Golbeck, J. (2013). Network structure and measures. In J. Golbeck (Eds.), Analyzing the social web (25–44). Boston: Morgan Kaufmann. doi:10.1016/B978-0-12-405531-5.00003-1
  • Hansen, D. L., Shneiderman, B., Smith, M. A., & Himelboim, I. (2020). Calculating and visualizing network metrics. In D. L. Hansen, B. Shneiderman, M. A. Smith, & I. Himelboim (Eds.), Analyzing social media networks with NodeXL (79–94). Burlington, MA, USA: Morgan Kaufmann. doi:10.1016/B978-0-12-817756-3.00006-6
  • Heinimann, H. R., & Hatfield, K. (2017). Infrastructure resilience assessment, management and governance–state and perspectives. In I. Linkov, & J. M. Palma-Oliveira (Eds.), Resilience and risk (pp. 147–187). Dordrecht, Netherlands: Springer. doi:10.1007/978-94-024-1123-2_5
  • Hines, P., Cotilla-Sanchez, E., & Blumsack, S. (2010). Do topological models provide good information about electricity infrastructure vulnerability? Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(3), 33122. doi:10.1063/1.3489887
  • Lee, R. M., Assante, M. J., & Conway, T. (2016). Analysis of the cyber attack on the Ukrainian power grid. In SANS Institute (Eds.), SANS industrial control systems. Washington, DC, USA: Tech. Rep.
  • Li, C., Liu, W., Cao, Y., Chen, H., Fang, B., Zhang, W., & Shi, H. (2014). Method for evaluating the importance of power grid nodes based on PageRank algorithm. IET Generation, Transmission & Distribution, 8(11), 1843–1847. doi:10.1049/iet-gtd.2014.0051
  • Liu, B., Li, Z., Chen, X., Huang, Y., & Liu, X. (2018). Recognition and vulnerability analysis of key nodes in power grid based on complex network centrality. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(3), 346–350. doi:10.1109/TCSII.2017.2705482
  • Motter, A. E., & Lai, Y.-C. (2002). Cascade-based attacks on complex networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 66(6 Pt 2), 65102. doi:10.1103/PhysRevE.66.065102
  • NERC. 2019. Lesson learned: Risks posed by firewall firmware vulnerabilities. North American Electric Reliability Corporation https://www.eenews.net/assets/2019/09/06/document_ew_02.pdf
  • Newman, M. (ed). (2010). Networks: An introduction. New York, USA: Oxford University Press Inc. doi:10.1093/acprof:oso/9780199206650.001.0001
  • O’Flaherty, K. 2019. U.S. government makes surprise move to secure power grid from cyberattacks. Forbes https://www.forbes.com/sites/kateoflahertyuk/2019/07/03/u-s-government-makes-surprise-move-to-secure-power-grid-from-cyber-attacks/#5fddd4d53191
  • Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251. doi:10.1016/j.socnet.2010.03.006
  • Pagani, G. A., & Aiello, M. (2011). Towards decentralization: A topological investigation of the medium and low voltage grids. IEEE Transactions on Smart Grid, 2(3), 538–547. doi:10.1109/TSG.2011.2147810
  • Pagani, G. A., & Aiello, M. (2013). The power grid as a complex network: A survey. Physica A: Statistical Mechanics and Its Applications, 392(11), 2688–2700. doi:10.1016/j.physa.2013.01.023
  • Pahwa, S., Youssef, M., & Scoglio, C. (2014). Electrical networks: An introduction. In G. D’Agostino, & A. Scala (Eds.), Networks of networks: The last frontier of complexity (163–186). Cham: Springer. doi:10.1007/978-3-319-03518-5_8
  • Panteli, M., & Mancarella, P. (2017). Modeling and evaluating the resilience of critical electrical power infrastructure to extreme weather events. IEEE Systems Journal, 11(3), 1733–1742. doi:10.1109/JSYST.2015.2389272
  • Pu, C., & Wu, P. 2019. Vulnerability assessment of power grids based on both topological and electrical properties. arXiv preprint arXiv:1909.05789.
  • Rosato, V., Bologna, S., & Tiriticco, F. (2007). Topological properties of high-voltage electrical transmission networks. Electric Power Systems Research, 77(2), 99–105. doi:10.1016/j.epsr.2005.05.013
  • Ruhnau, B. (2000). Eigenvector-centrality—a node-centrality? Social Networks, 22(4), 357–365. doi:10.1016/S0378-8733(00)00031-9
  • Salama, M., Ezzeldin, M., El-Dakhakhni, W., & Tait, M. (2020). Temporal networks: A review and opportunities for infrastructure simulation. Sustainable and Resilient Infrastructure, 1–16. doi:10.1080/23789689.2019.1708175
  • Shahpari, A., Khansari, M., & Moeini, A. (2019). Vulnerability analysis of power grid with the network science approach based on actual grid characteristics: A case study in Iran. Physica A: Statistical Mechanics and Its Applications, 513, 14–21. doi:10.1016/j.physa.2018.08.059
  • Siemens PTI. (2015). Power system simulator for engineering (PSSE): PSSE 34.0.1, Siemens Industry, Inc., Siemens power technologies international. New York, USA: Siemens Power Technologies International.
  • Sussman, B. 2019. Critical infrastructure: Revealed: Details of ‘first of its kind’ disruptive power grid attack. SecureWorld https://www.secureworldexpo.com/industry-news/first-U.S.-power-grid-attack-details
  • Wang, J.-W., & Rong, -L.-L. (2009). Cascade-based attack vulnerability on the US power grid. Safety Science, 47(10), 1332–1336. doi:10.1016/j.ssci.2009.02.002
  • Wang, J.-W., & Rong, -L.-L. (2011). Robustness of the western United States power grid under edge attack strategies due to cascading failures. Safety Science, 49(6), 807–812. doi:10.1016/j.ssci.2010.10.003
  • Wang, Z., Scaglione, A., & Thomas, R. J. (eds). (2010). Electrical centrality measures for electric power grid vulnerability analysis. IEEE. https://doi.org/10.1109/CDC.2010.5717964
  • Xu, Y., Gurfinkel, A. J., & Rikvold, P. A. (2014). Architecture of the Florida power grid as a complex network. Physica A: Statistical Mechanics and Its Applications, 401, 130–140. doi:10.1016/j.physa.2014.01.035
  • Yan, J., Tang, Y., He, H., & Sun, Y. (2015). Cascading failure analysis with DC power flow model and transient stability analysis. IEEE Transactions on Power Systems, 30(1), 285–297. doi:10.1109/TPWRS.2014.2322082

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.