2,917
Views
0
CrossRef citations to date
0
Altmetric
Conference Proceedings

Coalition for Disaster Resilient Infrastructure (CDRI) 2022 Conference Proceedings

References

  • Banerjee, S., & Matsagar, V. A. (2023, May). Earthquake response control of hospital buildings using unbonded fibre-reinforced elastomeric isolators. Sustainable and Resilient Infrastructure, 8;S2: 85–92.
  • Bhangdia, P., & Murhekar, A. (2023, May). Inclusion of people with disabilities in disaster and climate risk reduction planning: A case from Bhubaneswar, Odisha. Sustainable and Resilient Infrastructure, 8;S2: 137–142.
  • Boothroyd, R. J., Williams, R. D., & Hoey, T. B. (2023, May). ‘InfraRivChange’: A web application to monitor river migration at sites of critical bridge infrastructure in the Philippines. Sustainable and Resilient Infrastructure, 8;S2: 45–51.
  • Dahal, K., & Gnyawali, K. (2023, May). Mapping landslide susceptibility and critical infrastructures for spatial decision-making. Sustainable and Resilient Infrastructure, 8;S2: 52–58.
  • Dalal, P. H., Wanare, R., Patil, M., Reddy, A. S., Davee, T. N., & Iyer, K. K. R. (2023, May). Water stability test: A tool to assess resilience of geotechnical structures to flooding and water inundation. Sustainable and Resilient Infrastructure, 8;S2: 78–84.
  • Espinoza, D. (2023, May). Changing the valuation paradigm to promote adaptive and resilient infrastructure investment: Connecting insurance concepts and valuation. Sustainable and Resilient Infrastructure, 8;S2: 33–37.
  • Estrain, A., & Srinivasan, D. (2023, May). An integrated and dynamic approach to assessing risks through capabilities. Sustainable and Resilient Infrastructure, 8;S2: 99–103.
  • Gupta, K., & Nikam, V. (2023, May). Flood disaster risk assessment for critical transportation infrastructure under climate change. Sustainable and Resilient Infrastructure, 8;S2: 38–44.
  • Nalla, V., Johnson, C. Ranjit, N., Sen, G., Peddibhotla, A., Anand, M. C., … & Bazaz, A. B. (2023). Considering curriculum, content, and delivery for adaptive pathways: higher education and disaster resilient infrastructure in the Indian urban context. Sustainable and Resilient Infrastructure, 8;S1: 143–156.
  • Joo, M. R., & Sinha, R. (2023, May). Adaptive pathways for disaster-resilient infrastructure: Resilience assessment as a fundamental requirement. Sustainable and Resilient Infrastructure, 8;S2: 93–98.
  • Kamepalli, K. (2023, May). Solar disruptions in space infrastructure. Sustainable and Resilient Infrastructure, 8;S2: 72–77.
  • Keam, L., & Harrington, B. (2023, May). Improving resilience outcomes for infrastructure: How to maximize the benefits from disaster and climate risk assessment. Sustainable and Resilient Infrastructure, 8;S2: 20–24.
  • Kloss, P., & Samimi, M. (2023, May). Empowering decision-makers to take resilient action towards urban heat island mitigation by developing a multi-dimensional climate model. Sustainable and Resilient Infrastructure, 8;S2: 64–71.
  • Nakum, V., Ahamed, M. S., Chatterjee, R., Shaw, R., Isetani, S., & Soma, H. (2023, May). Comprehending school disaster resilience: Deriving indicators for risk-informed school evaluation. Sustainable and Resilient Infrastructure, 8;S2: 59–63.
  • Narendr, A., Aithal, B. H., & Das, S. (2023, May). Cost-benefit analysis of NbS using flood resilient scenario modelling (FReSMo). Sustainable and Resilient Infrastructure, 8;S2: 109–114.
  • Nivya, P. C., Karmakar, S., & Sajan, S. M. (2023, May). Exploring the potential of urban open spaces as city flood mitigation infrastructure. Sustainable and Resilient Infrastructure, 8;S2: 124–129.
  • Pal, I., Kumar, A., Roy, J., Benjachat, N., & Pimpakhun, K. (2023, May). Multi-hazard risk assessment of critical coastal infrastructure in the Eastern Economic Corridor of Thailand. Sustainable and Resilient Infrastructure, 8;S2: 115–123.
  • Palmate, S. S., & Kumar, S. (2023, May). Potential of Himalayan wetlands for mountain disaster risk reduction under climate change. Sustainable and Resilient Infrastructure, 8;S2: 130–136.
  • Pant, R., Jaramillo, D., & Hall, J. W. (2023, May). Systemic assessment of climate risks and adaptation options for transport networks in East Africa. Sustainable and Resilient Infrastructure, 8;S2: 12–19.
  • Parol, J., & Al-Sanad, S. (2023, May). Enhancing infrastructure resilience through structural health monitoring. Presented at DRI Technical Conference 2022.
  • Sánchez-Silva, M., & Acuña-Coll, N. (2023, May). Flexible and adaptable strategies for developing sustainable and resilient infrastructure. Sustainable and Resilient Infrastructure, 8;S2: 6–11.
  • Vithean, K., Janta, P., Thapmanee, K. Silva, K., & Chollacoop, N. (2023, May). Economic analysis framework for climate adaptation investment in the land transportation sector: A Thai case study. Sustainable and Resilient Infrastructure, 8;S2: 104–108.
  • Ziv, N., Soto, D., Sossou, A. E., Philippe, S., Camille, V., & Selouane, K. (2023, May). Resilience performance assessment (RPA): A framework and decision support tool for resilience of infrastructures and territories. Sustainable and Resilient Infrastructure, 8;S2: 25–32.

References

  • Blockley, D., & Godfrey, P. (2017). Doing it differently (2nd) ed.). ICE Publishing.
  • Haasnoot, M., Kwakkel, J. H., Walker, W. E., & Ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23(2), 485–498. https://doi.org/10.1016/j.gloenvcha.2012.12.006
  • Mizutori, M. (2018). Economic losses and displacement should drive disaster risk reduction efforts. Speaking to the press at the opening of the Asian Ministerial Conference on Disaster Risk Reduction. 3–6 July 2018. © UNISDR.
  • Rehak, D., Senovsky, P., Hromada, M., & Lovecek, T. (2019). Complex approach to assessing resilience of critical infrastructure elements. International Journal of Critical Infrastructure Protection, 25, 125–138. https://doi.org/10.1016/j.ijcip.2019.03.003
  • Sánchez-Silva, M. (2019). Managing infrastructure systems through changeability. ASCE Journal of Infrastructure Systems, 25(1), 04018040. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000467
  • Sánchez-Silva, M., & Calderón-Guevara, W. (2022). Flexibility and adaptability within the context of decision-making in infrastructure management. Structure and Infrastructure Engineering, 18(7), 950–966. https://doi.org/10.1080/15732479.2022.2038642
  • Scott, J. (2007, June). System resilience: Capabilities, culture and infrastructure. INCOSE 2007 – 1 Proceedings of the 7th Annual International Symposium, Long Beach.
  • Torres-Rincón, S., Bastidas-Arteaga, E., & Sánchez-Silva, M. (2021). A flexibility-based approach for the design and management of floating offshore wind farms. Renewable Energy, 175, 910–925. https://doi.org/10.1016/j.renene.2021.04.121

References

  • AfDB [African Development Bank]. (2014). Study on road infrastructure costs: Analysis of unit costs and cost overruns of road infrastructure projects in Africa.
  • Brown, V. (2020). Flooding in East Africa. C40 Cities Finance Facility.
  • Erman, A., Tariverdi, M., Obolensky, M., Chen, X., Vincent, R. C., Malgioglio, S., … Yoshida, N. (2019). Wading out the storm: The role of poverty in exposure, vulnerability and resilience to floods in Dar es Salaam. World Bank.
  • Global Infrastructure Hub. (2017). Global infrastructure outlook.
  • Hallegatte, S., Rentschler, J., & Rozenberg, J. (2019). Lifelines: The resilient infrastructure opportunity. World Bank.
  • Horvat, T., Bendix, H., Bobek, V., & Skoko, H. (2021). Impacts of investments in infrastructure projects on emerging markets’ growth: the case of East African countries, Economic Research-Ekonomska Istraživanja, 34:1, DOI: 10.1080/1331677X.2020.1860799
  • Kesete, Y., Raffo, V., Pant, R., Koks, E., Paltan, H., Russell, T., & Hall, J. (2021). Climate change risk analysis of Argentina’s land transport network. World Bank.
  • Koks, E. E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S. A., Hall, J. W., & Hallegatte, S. (2019). A global multi-hazard risk analysis of road and railway infrastructure assets. Nature Communications, 10(1), 2677. https://doi.org/10.1038/s41467-019-10442-3
  • Makena, B., Osunga, M., Kingori, S., & Abdillahi, H. S. (2021). An application of flood risk analysis for impact based forecasting in Kenya. Kenya Red Cross.
  • Njogu, H. W. (2021). Effects of floods on infrastructure users in Kenya. Journal of Flood Risk Management, 14(4), e12746. https://doi.org/10.1111/jfr3.12746
  • Oh, J. E., Espinet Alegre, X., Pant, R., Koks, E. E., Russell, T., Schoenmakers, R., & Hall, J. W. (2019). Addressing climate change in transport, vol. 2, Pathway to resilient transport. World Bank.
  • Hickford, A. J., Blainey, S. P., Pant, R., Jaramillo, D., Russell, T., Preston, J., Hall, J. W., Young, M. & Glasgow, G. (2023). Decision Support Systems for Resilient Strategic Transport Networks in Low-Income Countries: Final Report. High Volume Transport Applied Research Programme.
  • Pant, R., Koks, E. E., Russell, T., & Hall, J. W. (2018a). Transport risks analysis for the United Republic of Tanzania: Systemic vulnerability assessment of multi-modal transport networks. Oxford Infrastructure Analytics Ltd.
  • Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018b). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22–33. https://doi.org/10.1111/jfr3.12288
  • Pearce, D., Atkinson, G., & Mourato, S. (2006). Cost-benefit analysis and the environment: Recent developments. Organisation for Economic Co-operation and Development.
  • Schaller, N., Kay, A. L., Lamb, R., Massey, N. R., van Oldenborgh, G. J., Otto, F. E., Sparrow, S. N., Vautard, R., Yiou, P., Ashpole, I., Bowery, A., Crooks, S. M., Haustein, K., Huntingford, C., Ingram, W. J., Jones, R. G., Legg, T., Miller, J., Skeggs, J., … Allen, M. R. (2016). Human influence on climate in the 2014 southern England winter floods and their impacts. Nature Climate Change, 6, 627–634. https://doi.org/10.1038/nclimate2927
  • Wang, G., Wang, D., Trenberth, K., Erfanian, A., Yu, M., Bosilovich, M., & Parr, D. (2017). The peak structure and future changes of the relationships between extreme precipitation and temperature. Nature Climate Change, 7(4), 268–274. https://doi.org/10.1038/nclimate3239
  • World Bank. (2018). Road costs knowledge system (ROCKS): Doing business update.
  • World Resources Institute. (2020). Aqueduct floods hazard maps: https://www.wri.org/data/aqueduct-floods-hazard-maps

References

  • Coalition for Climate Resilient Infrastructure. (2022). Physical climate risk assessment methodology.
  • Equator Principles. (2020). EP4 July 2020.
  • EU Technical Expert Group on Sustainable Finance. (2020). Taxonomy report technical annex: updated methodology & updated technical screening criteria.
  • ICF World Bank Group. (2012). IFC performance standards on environmental and social sustainability.
  • IPCC.(2020). The concept of risk in the IPCC sixth assessment report: a summary of cross-Working Group discussions. A. Reisinger et al., Eds.
  • IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.) Climate Change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press.
  • IPCC. (2022). Summary for policymakers. In H.-O. Pörtner, D. C. Roberts, E. S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, & A. Okem (Eds.), Climate Change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the sixth assessment report of the Intergovernmental Panel on Climate Change. H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), (pp. 3–33). Cambridge University Press. https://doi.org/10.1017/9781009325844.001
  • Regulation (EU). (2020)852 of the European Parliament and of the Council of 18 June 2020 on the establishment of a framework to facilitate sustainable investment, and amending Regulation (EU) 2019/2088 (Text with EEA relevance) PE/20/2020/INIT OJ L 198, 22.6.2020, pp. 13–43 (BG, ES, CS, DA, DE, ET, EL, EN, FR, GA, HR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV).
  • Thacker, S., Adshead, D., Fantini, C., Palmer, R., Ghosal, R., Adeoti, T., Morgan, G., & Stratton-Short, S. (2021). Infrastructure for climate action. UNOPS.

References

  • Alogoskoufis, S., Dunz, N., Emambakhsh, T., Hennig, T., Kaijser, M., Kouratzoglou, C., Munoz, M. A., Parisi, L., & Salleo, C. (2021). ECB economy-wide climate stress test. Occasional Paper Series, n°281.
  • Armenakis, C., & Nirupama, N. (2013). Prioritization of disaster risk in a community using GIS. Natural Hazards, 66(1), 15–29. doi:10.1007/s11069-012-0167-8
  • Alonso, L., (2021). Intérêt de la modélisation de la température de l’air associé à la nécessité de la caractérisation des vulnérabilités territoriales pour une compréhension systémique du risque aux fortes chaleurs en milieu urbain sur Lyon et Tokyo, sous la direction de Jacques Comby, Université Jean Moulin (Lyon 3) et de Florent Renard, Université Jean Moulin (Lyon 3)
  • Auerswald, P.E., Branscomb, L. M., La Porte, T.M., & Michel-Kerjan, E.O. Seeds of Disaster, Roots of Response, How Private Action can Reduce Public Vulnerability Cambridge University Press, New York, 2006.
  • Casello, J., & Towns, W. (2017). Urbain. In K. Palko & D. S. Lemmen (Eds.), Risques climatiques et pratiques en matière d’adaptation pour le secteur canadien des transports 2016 (pp. 289–340). Government of Canada.
  • CEREMA (2019). Vulnérabilité et risques: les infrastructures de transport face au climat. Bron.
  • Gilbert, C., (2009). La vulnérabilité : une notion vulnérable ? À propos des risques naturels, In : Becerra S., et A. Peltier, Risques et Environnement : recherches interdisciplinaires sur la Vulnérabilité des sociétés, Paris, L’Harmattan, pp. 23–40.
  • IPCC. (2014). Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Core Writing Team, R. K. Pachauri & L. A. Meyer, Eds. IPCC.
  • IPCC. (2021). Climate Change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.). Cambridge University Press. In Press.
  • Koks, E. E., Jongman, B., Husby, T. G., & Botzen, W. J. W. (2015). Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science & Policy, 47, 42–52. doi:10.1016/j.envsci.2014.10.013
  • Lhomme, S., Serre, D., Diab, Y., & Laganier, R. (2010). Les réseaux techniques face aux inondations ou comment définir des indicateurs de performance de ces réseaux pour évaluer la résilience urbaine. In Bulletin de l’Association de géographes français (pp. 487–502).
  • Metzger, P., & D’Ercole, R. (2009). Risques et environnement: recherches interdisciplinaires sur la vulnérabilité des sociétés. In Becerra & Peltier (Eds.), Enjeux territoriaux et vulnérabilité – Une approche opérationnelle (pp. 391–402). L’Harmattan.
  • Romero-Lankao, P., Qin, H., & Dickinson, K. (2012). Urban vulnerability to temperature-related hazards: a meta-analysis and meta-knowledge approach. Global Environmental Change, 22(3), 670–683. doi:10.1016/j.gloenvcha.2012.04.002
  • Sharma, J., & Ravindranath, N. J. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessement under climate change. Environmental Research Communications, 1, 051004. doi:10.1088/2515-7620/ab24ed
  • Siwila, S., Taye, M. T., Quevauviller, P., Willems, P., & Siwi, S. (2013). Climate change impact investigation on hydro-meteorological extremes on Zambia’s Kabompo Catchment.
  • Social vulnerability assessment tools for climate change and DRR programming. (2017).
  • Solecki, W. D., & Oliveri, C. (2004). Downscaling climate change scenarios in an urban land use change model. Journal of Environmental Management, 72(1–2), 105–115. doi:10.1016/j.jenvman.2004.03.014
  • Theme, M. J., Gobiet, A., & Heinrich, G. (2012). Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112(2), 449–468. doi:10.1007/s10584-011-0224-4
  • World Bank Group. (2022). PPIAF. Global infrastructure facility. Climate toolkits for infrastructure PPPs

References

  • Espinoza, D., & Morris, J. (2013). Decoupled NPV: A simple, improved method to value infrastructure investments. Construction Management and Economics, 31(5), 471–496. https://doi.org/10.1080/01446193.2013.800946
  • Espinoza, D., & Rojo, J. (2015). Using DNPV for valuing investments in the energy sector: A solar project case study. Renewable Energy, 75, 44–49. https://doi.org/10.1016/j.renene.2014.09.011
  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, XLVIII(2), 263–291. https://doi.org/10.2307/1914185
  • López-Marín, J. A., Del Amor, G. F. M., & Brotons, J. M. (2020). The financial valuation risk in pepper production: The use of decoupled net present value. In Mathematics 2021, 9 (pp. 1).
  • Lukomnik, J., & Hawley, J. P. (2021). Moving beyond modern portfolio theory: Investing that matters. Taylor & Francis.
  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.
  • Nguyen, N., Almarri, K., & Boussabaine, H. (2020). A risk-adjusted decoupled-Net-Present-Value model to determine the optimal concession period of BOT projects. Built Environment Project and Asset Management, 11(1), 4–21. https://doi.org/10.1108/BEPAM-12-2019-0134
  • Ponomarenko, T., Marin, E., & Galevskiy, S. (2022). Economic evaluation of oil and gas projects: Justification of engineering solutions in the implementation of field development projects. Energies, 15(9), 1–22. https://doi.org/10.3390/en15093103
  • Robichek, A. A., & Myers, S. C. (1966). Conceptual problems in the use of risk-adjusted discount rates. Journal of Finance, 21(4), 727–730.
  • Ross, S. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360. https://doi.org/10.1016/0022-0531(76)90046-6
  • Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425–442.
  • Shimbar, A., & Ebrahimi, S. B. (2017). The application of DNPV to unlock foreign direct investment in waste-to-energy in developing countries. Energy: The International Journal, 132, 186–193. https://doi.org/10.1016/j.energy.2017.05.098

References

  • CPHEEO. (2019). Urban drainage manual. Ministry of Housing and Urban Affairs, Government of India. August 2019.
  • DEFRA/Environment Agency. (2005). Framework and guidance for assessing and managing flood risk for new development. Full documentation and tools. R&D Technical Report FD2320/TR2
  • Government of Maharashtra. (2006). Report of the Fact-Finding Committee (FFC) on Mumbai floods.
  • NDMA. (2010). Urban flood disaster management guidelines. Government of India. September 2010
  • United States Army Corps of Engineers (USACE). (2010a). Hydrologic Modelling System HEC-HMS user’s manual. Davis.
  • United States Army Corps of Engineers (USACE). (2010b). River Analysis System HEC-RAS user’s manual. Davis.

References

  • Abancó, C., Bennett, G.L., Matthews, A. J., Matera, M. A. M. and Tan, F. J. (2021). The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Natural Hazards and Earth System Sciences, 21, 1531–1550. https://doi.org/10.5194/nhess-21-1531-2021
  • Boothroyd, R. J., Williams, R. D., Hoey, T. B., Tolentino, P. L. M., & Yang, X. (2021). National-scale assessment of decadal river migration at critical bridge infrastructure in the Philippines. Science of the Total Environment, 768, 144460. https://doi.org/10.1016/j.scitotenv.2020.144460
  • Carbonneau, P. E. & Piégay, H. (2012). Introduction: The growing use of imagery in fundamental and applied river siences (pp. 1-18). In Fluvial Remote Sensing for Science and Management (eds P. E. Carbonneau and H. Piégay). John Wiley & Sons. https://doi.org/10.1002/9781119940791.ch1
  • Catane, S. G., Abon, C. C., Saturay, R. M., Mendoza, E. P. P., & Futalan, K. M. (2012). Landslide-amplified flash floods: The June 2008 Panay Island flooding, Philippines. Geomorphology, 170, 55–63. https://doi.org/10.1016/j.geomorph.2012.04.008
  • Dingle, E. H., Paringit, E. C., Tolentino, P. L. M., Williams, R. D., Hoey, T. B., Barrett, B., Long, H., Smiley, C., & Stott, E. (2019). Decadal-scale morphological adjustment of a lowland tropical river. Geomorphology, 333, 30–42. https://doi.org/10.1016/j.geomorph.2019.01.022
  • Eccles, R., Zhang, H., & Hamilton, D. (2019). A review of the effects of climate change on riverine flooding in subtropical and tropical regions. Journal of Water and Climate Change, 10(4), 687–707. https://doi.org/10.2166/wcc.2019.175
  • Eckstein, D., Künzel, V., & Schäfer, L. (2021). Global Climate Risk Index. Germanwatch
  • Enke, D.L., Tirasirichai, C., Luna, R. (2008). Estimation of earthquake loss due to bridge damage in the St. Louis metropolitan area. II: indirect losses. Natural Hazard Review, 9, 12–19. https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(12).
  • Gilvear, D. J., & Bryant, R. (2016). Analysis of remotely sensed data for fluvial geomorphology and river science (pp. 103-132). In Tools in Fluvial Geomorphology (eds G.M. Kondolf and H. Piégay). John Wiley & Sons. https://doi.org/10.1002/9781118648551.ch6
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • McLean, D. G., Vasquez, J., Oberhagemann, K., & Sarker, M. (2012). Padma River morphodynamics near Padma Bridge River Flow 2012. Proceedings of the International Conference on Fluvial Hydraulics, 1, 741–747.
  • Olsson, J. (2009). Improved road accessibility and indirect development effects: Evidence from rural Philippines. Journal of Transport Geography, 17(6), 476–483. https://doi.org/10.1016/j.jtrangeo.2008.09.001
  • Oo, M. M., Kyi, C. C. T., & Zin, W. W. (2019). Historical morphodynamics assessment in bridge areas using remote sensing. Civil Engineering Journal, 5(11), 2515–2524. https://doi.org/10.28991/cej-2019-03091429
  • Pregnolato, M. (2019). Bridge safety is not for granted: A novel approach to bridge management. Engineering Structures, 196, 1091932. https://doi.org/10.1016/j.engstruct.2019.05.035
  • Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., & Neal, J. (2019). New estimates of flood exposure in developing countries using high-resolution population data. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-09282-y
  • Sudmanns, M., Tiede, D., Lang, S., Bergstedt, H., Trost, G., Augustin, H., Blaschke, T., & Blaschke, T. (2020). Big Earth data: Disruptive changes in Earth observation data management and analysis? International Journal of Digital Earth, 13(7),832–850. https://doi.org/10.1080/17538947.2019.1585976
  • Tolentino, P. L. M., Poortinga, A., Kanamaru, H., Keesstra, S., Maroulis, J., David, C. P. C., & Ritsema, C. J. (2016). Projected impact of climate change on hydrological regimes in the Philippines. PLoS ONE, 11(10), e0163941. https://doi.org/10.1371/journal.pone.0163941
  • Vallejo, S. C. (2015). Evaluation of major bridges in Cagayan Valley, Philippines. Countryside Development Research Journal, 3(1), 13–18.
  • World Bank. (2018). Philippines economic update, October 2018: Staying the course amid global uncertainty.
  • Yusuf, A. A., & Francisco, H. (2009). Climate change vulnerability mapping for Southeast Asia. Economy and Environment Program for Southeast Asia (EEPSEA).

References

  • Chen, X., & Wei, C. (2021). GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena, 196(January), 104833. https://doi.org/10.1016/j.catena.2020.104833
  • Dahal, R. K. (2012). Rainfall-induced landslides in Nepal. International Journal of Erosion Control Engineering, 5(1), 1–8. https://doi.org/10.13101/ijece.5.1
  • Dhakal, S. (2015). Disasters in Nepal. Disaster risk management: Concept, policy and practices in Nepal. Strengthening disaster risk management in academia. Tribhuvan University, Central Department of Environmental Science Kirtippur, Nepal and United Nations Development Programme, Pulchok, Nepal. https://www.researchgate.net/profile/Subodh-Dhakal/publication/303389994_Disasters_in_Nepal/links/57404a5008ae9f741b32c616/Disasters-in-Nepal.pdf
  • Gnyawali, K., Dahal, K., Talchabhadel, R., & Nirandjan, S.. (2023). Framework for rainfall-triggered landslide-prone critical infraGnystructure zonation. The Science of the Total Environment, 872, 162242. https://doi.org/10.1016/j.scitotenv.2023.162242
  • Mehrabi, M. (2022). Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy. Natural Hazards, 111(1), 901–937. https://doi.org/10.1007/s11069-021-05083-z
  • Park, S., Choi, C., Kim, B., & Kim, J.. (2018). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464. https://doi.org/10.1007/s12665-012-1842-5
  • Paudyal, K. R., Devkota, K. C., Parajuli, B. P., Shakya, P., & Baskota, P. (2021). Landslide susceptibility assessment using open-source data in the far western Nepal Himalaya: Case studies from selected local level units. Journal of Institute of Science and Technology, 26(2), 31–42. https://doi.org/10.3126/jist.v26i2.41327
  • Pham, B. T., Pradhan, B., Bui, D. T., Prakash, I., & Dholakia, M. B. (2016). A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand Area (India). Environmental Modelling & Software, 84(October), 240–250. https://doi.org/10.1016/j.envsoft.2016.07.005
  • Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180(May), 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001
  • Rusk, J., Maharjan, A., Tiwari, P., Chen, T.-H. K., Shneiderman, S., Turin, M., & Seto, K. C. (2021). Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. The Science of the Total Environment, 804, 150039.https://doi.org/10.1016/j.scitotenv.2021.150039
  • Safanelli, J. L., Poppiel, R. R., Chimelo Ruiz, L. F., Bonfatti, R., Alcantara de Oliveira Mello, F., Rizzo, R., & Demattê, J. A. M. (2020). Terrain analysis in Google Earth Engine: A method adapted for high-performance global-scale analysis. ISPRS International Journal of Geo-Information, 9(6), 400. https://doi.org/10.3390/ijgi9060400
  • Sarkar, S., & Kanungo, D. P. (2004). An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering & Remote Sensing, 70(5), 617–625. https://doi.org/10.14358/PERS.70.5.617
  • Shano, L., Raghuvanshi, T. K., & Meten, M. (2020). Landslide susceptibility evaluation and hazard zonation techniques – a review. Geoenvironmental Disasters, 7(1), 1–19. https://doi.org/10.1186/s40677-020-00152-0
  • Singh, S., Joshi, A., Sahu, A., Prasath, R. A., Sharma, S., & Dwivedi, C. S. (2022). Himalayan landslides: Causes and evolution. In S. Kanga, G. Meraj, M. Farooq, S. K. Singh, & M. S. Nathawat (Eds.), Disaster management in the complex Himalayan terrains: Natural hazard management, methodologies and policy implications (pp. 33–42). Springer International. https://doi.org/10.1007/978-3-030-89308-8_3
  • Talchabhadel, Rocky, Shah, Suraj, & Aryal, Bibek. (2022). IMERG Datasets for NEPAL [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7316023
  • Vakhshoori, V., & Zare, M. (2018). Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomatics, Natural Hazards and Risk, 9(1), 249–266. https://doi.org/10.1080/19475705.2018.1424043
  • Wubalem, A., & Meten, M. (2020). Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses Area, Northwestern Ethiopia. SN Applied Sciences, 2(5), 807. https://doi.org/10.1007/s42452-020-2563-0
  • Xiao, T., Samuele Segoni, S., Chen, L., Yin, K., & Casagli, K. (2020). A step beyond landslide susceptibility maps: A simple method to investigate and explain the different outcomes obtained by different approaches. Landslides, 17(3), 627–640.

References

References

  • Emmanuel, M. R. (2005). An urban approach to climate-sensitive design: strategies for the tropics. Spon.
  • Ermida, S. L., Soares, P., Mantas, V., Göttsche, F.-M., & Trigo, I. F. (2020). Google Earth Engine open-source code for Land Surface Temperature estimation from the Landsat series. Remote Sensing, 12(9), 1471. doi:10.3390/rs12091471
  • Gartland, L. (2008). Heat islands: Understanding and mitigating heat in urban areas. Earthscan.
  • Givoni, B. (1998). Climate considerations in building and urban design, Canada. John Wiley & Sons.
  • Google Earth (2021). https://earth.google.com/web/.
  • Landsberg, E. H. (1981). The urban climate. Academic Press.
  • Ludwig, F. L. (1970). Urban temperature fields. Urban climate. WMO Tech, Note 108: 80–112.
  • Oke, T. R. (1987). Boundary layer climates (2nd ed.). Methuen and Co.
  • Samimi, M. (2007). From the sun to the architect. M.Arch. thesis. Supervisor: M. Tahbaz. Faculty of Architecture and Urban Planning, Shahid Beheshti University.
  • Samimi, M., & Nasrollahi, F. (2014). Intelligent design using solar-climatic vision: Energy and comfort improvement in architecture and urban planning using SOLARCHVISION. In Young Cities Research Paper Series (Vol. 9). Technische Universität Berlin.
  • Santamouris, M. (2001). Energy and climate in the urban built environment. James & James.
  • Shahmohamadi (Kloss), P., Che-Ani, A. I., Maulud, K. N. A., Tawil, N. M., & Abdullah, N. A. G. (2011). Impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Studies Research, (2011, 1–9. doi:10.1155/2011/497524

References

  • Baker, D. (2001). Satellite anomalies due to space storms. In I. A. Daglis (Ed.), Space storms and space weather hazards (Vol. 10, pp. 251–284). Kluwer.
  • Cannon, P., Angling, M., Barclay, L., Curry, C., Dyer, C., Edwards, R., Greene, G., Hapgood, M. A., Horne, R. B., Jackson, D., Mitchell, C., Owen, J., Richards, A., Ryden, K., Saunders, S., Sweeting, M., Tanner, R., Thomson, A., & Underwood, C. (2013). Extreme space weather: Impacts on engineered systems and infrastructure. Royal Academy of Engineering.
  • Cliver, E. W. (2006). The 1859 space weather event: Then and now. Advances in Space Research, 38(2), 119–129. https://doi.org/10.1016/j.asr.2005.07.077
  • Desai, M. V., & Shah, S. N. (2018a). The GIVE ionospheric delay correction approach to improve positional accuracy of NavIC/IRNSS singlefrequency receiver. Current Science (00113891), 114(8), 1665–1676. https://doi.org/10.18520/cs/v114/i08/1665-1676
  • Eastwood, J. P., Biffis, E., Hapgood, M. A., Green, L., Bisi, N. M., Bentley, R. D., Wicks, R., McKinnell, L.-A., Gibbs, M., & Burnett, C. (2017). Perspective. The Economic Impact of Space Weather: Where Do We Stand? Risk Analysis, 37(2). https://doi.org/10.1111/risa.12765
  • Horne, R. B., Phillips, M. W., Glauert, S. A., Meredith, N. P., Hands, A. D. P., Ryden, K., & Li, W. (2018). Realistic worst case for a severe space weather event driven by a fast solar wind stream. Space Weather, 16(9), 1202–1215. https://doi.org/10.1029/2018SW001948
  • Marov, M. Y., & Kuznetsov, V. D. (2014). Solar flares and impact on Earth. In F. Allahdadi & J. Pelton (Eds.), Handbook of cosmic hazards and planetary defense. Springer, Cham. https://doi.org/10.1007/978-3-319-02847-7_1-1
  • Ngwira, C. M., Pulkkinen, A., Mays, M. L., Kuznetsova, M. M., Galvin, A. B., Simunac, K., Baker, D. N., Li, X., Zheng, Y., & Glocer, A. (2013). Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed? Space Weather, 11(12), 671–679. https://doi.org/10.1002/2013SW000990
  • Olga Maltseva, and Natalia, Mozhaeva. (2016). Empirical Modeling of the Total Electron Content of the Ionosphere. Habib M (ed.) (2016). Empirical Modeling and Its Applications. InTech. DOI:10.5772/61406. https://www.intechopen.com/chapters/50592
  • Oliveira, D. M., & Zesta, E. (2019). Satellite orbital drag during magnetic storms. Space Weather, 17(11), 1533. https://doi.org/10.1029/2019SW002287
  • Oliveira, D. M., Arel, D., Raeder, J., Zesta, E., Ngwira, C. M., Carter, B. A., et al. (2018). Geomagnetically induced currents caused by interplanetary shocks with different impact angles and speeds. Space Weather, 16, 636–647. https://doi.org/10.1029/2019SW002287
  • Priest, E. (2014). Magnetohydrodynamics of the Sun. Cambridge University Press.
  • Schrijver, C. J., Kauristie, K., Aylward, A. D., Denardini, C. M., Gibson, S. E., Glover, A., Gopalswamy, N., Grande, M., Hapgood, M., Heynderickx, D., Jakowski, N., Kalegaev, V. V., Lapenta, G., Linker, J. A., Liu, S. P., Mandrini, C. H., Mann, I. R., Nagatsuma, T., Nandy, D., … Vilmer, N. (2015). Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Advances in Space Research, 55(12), 2745–2807. https://doi.org/10.1016/j.asr.2015.03.023
  • Shibayama, T., Maehara, H., Notsu, S., Notsu, Y., Nagao, T., Honda, S., Ishii, T. T., Nogami, D., & Shibata, K. (2013). SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER . I. STATISTICAL PROPERTIES OF SUPERFLARES. The Astrophysical Journal Supplement Series, 209(1), 5. https://doi.org/10.1088/0067-0049/209/1/5
  • Wang, N., Yuan, Y., Li, Z., & Huo, X. (2016). Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv. Space Res, 57(7), 1555–1569.

References

  • BSI. (1990). BS 1377-5: BS 1377-5:1990. Methods of test for soils for engineering purposes. Compressibility, permeability and durability tests. British Standards Institution.
  • Dalal, P. H., Patil, M., Dave, T. N., & Iyer, K. K. (2022). An experimental study on controlled low strength material (CLSM) for utilization as sustainable backfill. Materials Today: Proceedings.
  • Elshaer, M. (2017). Assessing the mechanical response of pavements during and after flooding. University of New Hampshire 178. https://scholars.unh.edu/dissertation/160/
  • Lebbe, M. F. K., Lokuge, W., Setunge, S., & Zhang, K. (2014). Failure mechanisms of bridge infrastructure in an extreme flood event. First International Conference on Infrastructure Failures and Consequences, 124–132.
  • Oyediji, R., Lu, D., & Tighe, S. L. (2021). Impact of flooding and inundation on concrete pavement performance. International Journal of Pavement Engineering, 22(11), 1363–1375. https://doi.org/10.1080/10298436.2019.1685671
  • Polemio, M., & Lollino, P. (2011). Failure of Infrastructure Embankments Induced by Flooding and Seepage: A Neglected Source of Hazard, 3383–3396. https://doi.org/10.5194/nhess-11-3383-2011
  • Umesh, T. S., Dinesh, S. V., & Sivapullaiah, P. V. (2011). Characterization of dispersive soils. Materials Sciences and Applications, 02(6), 629–633. https://doi.org/10.4236/msa.2011.26085
  • Wanare, R., & Iyer, K. K. (2022). A study to investigate the effect of different proportion of ultrafine slag and calcium-based activator for sustainable crack mitigation of marine soil. Cleaner Materials, 6, 100141. https://doi.org/10.1016/j.clema.2022.100141
  • Zhang, G., Wu, C., Hou, D., Yang, J., Sun, D., & Zhang, X. (2021). Effect of environmental pH values on phase composition and microstructure of Portland cement paste under sulfate attack. Composites Part B: Engineering, 216(April), 108862. https://doi.org/10.1016/j.compositesb.2021.108862

References

  • Banerjee, S., & Matsagar, V. A. (n.d.). A trilinear hysteretic model and design procedure for unbonded fiber-reinforced elastomeric isolators. Journal of Structural Engineering (ASCE), Under Review.
  • Banerjee, S., & Matsagar, V. A. (n.d.) A novel trilinear hysteretic model and equivalent linearization for fiber-reinforced elastomeric isolators. Journal of Engineering Mechanics (ASCE), Under Review.
  • Das, A., Deb, S. K., & Dutta, A. (2016). Shake table testing of un-reinforced brick masonry building test model isolated by U-FREI. Earthquake Engineering and Structural Dynamics, 45(2), 253–272. https://doi.org/10.1002/eqe.2626
  • Ferraioli, M., & Avossa, A. M. (2012). Base isolation seismic retrofit of a hospital building in Italy. Journal of Civil Engineering and Architecture, 6(3), 308–321.
  • Ferraioli, M., & Mandara, A. (2017). Base isolation for seismic retrofitting of a multiple building structure: Design, construction, and assessment. Mathematical Problems in Engineering, 2017.
  • IS 1893 (Part 1): 2016. (2016). Criteria for earthquake resistant design of structures –Code of Practice: Part 1 General provisions and buildings. Bureau of Indian Standards.
  • IS 875 (Part 2): 1987. (1987). Design loads (other than earthquake) for buildings and structures – Code of Practice: Part 2 imposed loads. Bureau of Indian Standards.
  • Kelly, J. M. (1999). Analysis of fiber-reinforced elastomeric isolators. Journal of Seismology and Earthquake Engineering, 2(1), 19–34.
  • Matsagar, V. A., & Jangid, R. S. (2008). Base isolation for seismic retrofitting of structures. Practice Periodical on Structural Design and Construction, 13(4), 175–185. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:4(175)
  • Ngo, T. V., Deb, S. K., & Dutta, A. (2018). Effect of horizontal loading direction on performance of prototype square unbonded fibre reinforced elastomeric isolator. Structural Control and Health Monitoring, 25(3), 3. https://doi.org/10.1002/stc.2112
  • SeismoMatch. (2022). SeimoMatch (Version 2022) [Computer software]. https://seismosoft.com/products/seismomatch/
  • Thuyet, V. N., Deb, S. K., & Dutta, A. (2018). Mitigation of seismic vulnerability of prototype low-rise masonry building using U-FREIs. Journal of Performance of Constructed Facilities, 33, 2.
  • Toopchi-Nezhad, H., Tait, M. J., & Drysdale, R. G. (2008). Lateral response evaluation of fiber-reinforced neoprene seismic isolators utilized in an unbonded application. Journal of Structural Engineering, 134(10), 1627–1637. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:10(1627)
  • Toopchi-Nezhad, H., Tait, M. J., & Drysdale, R. G. (2011). Bonded versus unbonded strip fiber reinforced elastomeric isolators: Finite element analysis. Composite Structures, 93(2), 850–859. https://doi.org/10.1016/j.compstruct.2010.07.009

References

  • ATC 138-3. (2021). Methodology for assessment of functional recovery time. Applied Technology Council. https://www.ATCouncil.org
  • Badal, P. S., & Sinha, R. (2019). Selection of archetypical building configuration for special reinforced concrete moment-resisting frames. Department of Civil Engineering, Indian Institute of Technology Bombay. https://www.civil.iitb.ac.in/~rsinha/TechRep_SMRF_Archetype
  • Badal, P. S., & Sinha, R. (2022). A framework to incorporate probabilistic performance in force-based seismic design of RC buildings as per Indian standards. Journal of Earthquake Engineering, 26(3), 1253–1280. https://doi.org/10.1080/13632469.2020.1713931
  • Cook, D. T., Liel, A. B., DeBock, D. J., & Haselton, C. B. (2021). Benchmarking FEMA P-58 repair costs and unsafe placards for the Northridge Earthquake: Implications for performance-based earthquake engineering. International Journal of Disaster Risk Reduction, 56, 102117. https://doi.org/10.1016/J.IJDRR.2021.102117
  • Cook, D. T., Liel, A. B., Haselton, C. B., & Koliou, M. (2022). A framework for operationalizing the assessment of post-earthquake functional recovery of buildings. Earthquake Spectra, 38(3), 1972–2007. https://doi.org/10.1177/87552930221081538
  • Djalante, R., Holley, C., Thomalla, F., & Carnegie, M. (2013). Pathways for adaptive and integrated disaster resilience. Natural Hazards, 69(3), 2105–2135. https://doi.org/10.1007/s11069-013-0797-5
  • FEMA P-58. (2018). Seismic performance assessment of buildings. Federal Emergency Management Agency. https://www.ATCouncil.org
  • Haasnoot, M., Kwakkel, J. H., Walker, W. E., & ter Maat, J. (2013). Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Global Environmental Change, 23(2), 485–498. https://doi.org/10.1016/j.gloenvcha.2012.12.006
  • Joo, M. R., Badal, P. S., & Sinha, R. (2022). Recovery-based seismic resilience assessment of IS code-conforming RC buildings. 17th Symposium on Earthquake Engineering. Roorkee, India.
  • Joo, M. R., & Sinha, R. (2023). Performance-based selection of pathways for enhancing built infrastructure resilience. Sustainable and Resilient Infrastructure, 1–23. https://doi.org/10.1080/23789689.2023.2188347
  • Kurth, M. H., Keenan, J. M., Sasani, M., & Linkov, I. (2019). Defining resilience for the US building industry. Building Research & Information, 47(4), 480–492. https://doi.org/10.1080/09613218.2018.1452489
  • McKenna, F., Fenves, G. L., & Scott, M. H. (2000). Open system for earthquake engineering simulation. University of California, Berkeley. http://opensees.berkeley.edu
  • Potter, S. H., Becker, J. S., Johnston, D. M., & Rossiter, K. P. (2015). An overview of the impacts of the 2010–2011 Canterbury earthquakes. International Journal of Disaster Risk Reduction, 14, 6–14. https://doi.org/10.1016/j.ijdrr.2015.01.014
  • Raghukanth, S. (2020). Development of probabilistic seismic hazard map of India. Personal communication.
  • SP3. (2022). Seismic Performance Prediction Program (v1.2.0). Haselton- Baker Risk Group. http://www.sp3risk.com
  • Tellman, B., Bausch, J. C., Eakin, H., Anderies, J. M., Mazari-Hiriart, M., Manuel-Navarrete, D., & Redman, C. L. (2018). Adaptive pathways and coupled infrastructure: Seven centuries of adaptation to water risk and the production of vulnerability in Mexico City. Ecology and Society, 23(1), art1. https://doi.org/10.5751/ES-09712-230101
  • UNDRR. (2022). Principles for resilient infrastructure. United Nations Office for Disaster Risk Reduction.

References

References

References

  • Balica, S. F., Wright, N. G., & Van der Meulen, F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards, 64(1), 73–105. https://doi.org/10.1007/s11069-012-0234-1
  • Columbia University. (2007). India: Population density within and outside of a 10 m low elevation coastal zone.
  • Das, G. K. (2021). Cyclonic hazards in the recent past in peninsular India. Reason. A Technical Journal, 19, 2277–1654.
  • Dhiman, R., VishnuRadhan, R., & Eldho, T. I. (2019). Flood risk and adaptation in Indian coastal cities: recent scenarios. Applied Water Science, 9(1), 5. https://doi.org/10.1007/s13201-018-0881-9
  • District Disaster Management Department (DDMD). (2020). District disaster management plan. Government of West Bengal.
  • Hivamurthy, V., & Ramachandra, T. V. (2017). Characterization and visualization of spatial patterns of urbanization and sprawl through metrics and modeling. Cities and the Environment (CATE), 10(1), 5.
  • Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J., Lincke, D., & Hinkel, J. (2020). Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-67736-6
  • Lopez-Farias, R., Valdez, S. I., & Garcia-Robledo, A. (2021). Parameter calibration of the patch growing algorithm for urban land change simulations. In 2021 Mexican International Conference on Computer Science ( ENC) (pp. 1–8). IEEE.
  • Narendr, A., Vinay, S., Aithal, B. H., & Das, S. (2022). Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS. Environment, Development and Sustainability, 24(7), 9569–9597. https://doi.org/10.1007/s10668-021-01839-6
  • PMAY-G. (2016). A compendium of rural housing typologies PAHAL. Government of India. https://pmayg.nic.in/netiayHome/Document/Pahal.pdf
  • Shivamurthy, V., Narendr, A., & Aithal, B. H. (2022). Forecasting and evaluation of impacts and risk due to tidal anomalies on a coastal island. Journal of the Indian Society of Remote Sensing, 50(1), 99–114. https://doi.org/10.1007/s12524-021-01458-8
  • UNICEF. (2021). Situation report.
  • World Bank. (2022). The economics of large-scale mangrove conservation and restoration in Indonesia.

References

  • Ali, S. A., Khatun, R., Ahmad, A., & Ahmad, S. (2019). Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, India. Modeling Earth Systems and Environment, 5, 5(3), 1083–1102. https://doi.org/10.1007/s40808-019-00593-z
  • The Board of Investment of Thailand. (2017).Thailand Infrastructure Development. https://www.boi.go.th/upload/content/BOI%20-%20Thailand%20Infrastructure%20Development_14976.pdf
  • Das, S., Pradhan, B., Alamri, A., & Shit, P. (2020). Assessment of wetland ecosystem health using the pressure-state-response (PSR) model: A case study of Mursidabad District of West Bengal (India). Sustainability, 12, 1–18. https://doi.org/10.3390/su12155932
  • European Commission. (2019).INFORM Index for Risk Management: Thailand country profile. https://drmkc.jrc.ec.europa.eu/inform-index/INFORM-Risk/Country-Profile/moduleId/1767/id/386/controller/Admin/action/CountryProfile
  • Fekete, A. (2012). Spatial disaster vulnerability and risk assessments: Challenges in their quality and acceptance. Natural Hazards, 61(3), 1161–1178. https://doi.org/10.1007/s11069-011-9973-7
  • Ghosh, S., & Mistri, B. (2021). Assessing coastal vulnerability to environmental hazards of Indian Sundarban delta using multi-criteria decision-making approaches. Ocean & Coastal Management, 209, 105641. https://doi.org/10.1016/j.ocecoaman.2021.105641
  • Haraguchi, M., & Lall, U. (2015). Flood risks and impacts: A case study of Thailand’s floods in 2011 and research questions for supply chain decision making. International Journal of Disaster Risk Reduction, 14, 256–272. https://doi.org/10.1016/j.ijdrr.2014.09.005
  • Hoque, M.-A.-A., Pradhan, B., Ahmed, N., & Roy, S. (2019). Tropical cyclone risk assessment using geospatial techniques for the eastern coastal region of Bangladesh. Science of the Total Environment, 692, 10–22. https://doi.org/10.1016/j.scitotenv.2019.07.132
  • IPCC, (2014): Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  • Mandal, S., & Choudhury, B. (2014). Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models. Theoretical and Applied Climatology, 121. https://doi.org/10.1007/s00704-014-1212-1
  • Marcelo, D., Raina, A., Houser, S., Saha, D., Bhatia, H. P. S., Suzuki, K., … Adams-Kotsch, V. (2020). Infrastructure in Asia and the Pacific. https://openknowledge.worldbank.org/bitstream/handle/10986/34228/Road-Transport-Electricity-and-Water-and-Sanitation-Services-in-East-Asia-South-Asia-and-the-Pacific-Islands.pdf?sequence=4&isAllowed=y
  • Mohanty, S. K., Chatterjee, R., & Shaw, R. (2020). Building resilience of critical infrastructure: A case of impacts of cyclones on the power sector in Odisha. Climate, 8(6), 73. https://doi.org/10.3390/cli8060073
  • Mullick, M. R., Tanim, A., & Islam, S. M. S. (2019). Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospatial techniques. Ocean & Coastal Management, 174, 154–169. https://doi.org/10.1016/j.ocecoaman.2019.03.010
  • Noor, N. M., & Abdul Maulud, K. N. (2022). Coastal vulnerability: A brief review on integrated assessment in Southeast Asia. Journal of Marine Science and Engineering, 10(5), 595. https://doi.org/10.3390/jmse10050595
  • Parry, M. L., Canziani, O., Palutikof, J. P., van der Linden, P., & Hanson, C. E. (2007). Climate Change 2007: Impacts, adaptation and vulnerability.
  • Qasim, S., Qasim, M., Shrestha, R., & Khan, A. (2017). An assessment of flood vulnerability in Khyber Pukhtunkhwa province of Pakistan. AIMS Environmental Science, 4, 206–216. https://doi.org/10.3934/environsci.2017.2.206
  • Rana, I., & Routray, J. (2016). Actual vis-à-vis perceived risk of flood prone urban communities in Pakistan. International Journal of Disaster Risk Reduction, 19, 366–378. https://doi.org/10.1016/j.ijdrr.2016.08.028
  • Rufat, S., Tate, E., Burton, C. G., & Maroof, A. S. (2015). Social vulnerability to floods: Review of case studies and implications for measurement. International Journal of Disaster Risk Reduction, 14, 470–486. https://doi.org/10.1016/j.ijdrr.2015.09.013
  • Sahana, M., & Sajjad, H. (2019). Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Remote Sensing Applications: Society and Environment, 13, 106–120. https://doi.org/10.1016/j.rsase.2018.10.008
  • Speakman, D. (2008). Mapping flood pressure points: Assessing vulnerability of the UK Fire Service to flooding. Natural Hazards, 44(1), 111–127.
  • Tormey, B., Peek, K., & Young, R. (2016). Coastal vulnerability assessments for National Park Service infrastructure: Examples in the Carolinas.
  • UKABC. (2019).Thailand’s Key Infrastructure Sectors. https://ukabc.org.uk/news/thailands-key-infrastructure-sectors/
  • Yoo, G., Park, S., Chung, D., Kang, H., & Hwang, J. (2010). Development and application of a methodology for climate change vulnerability assessment: Sea level rise impact on a coastal city. Environmental Policy, 9, 185–205. https://doi.org/10.17330/joep.9.2.201006.185
  • Yu, D., Yin, J., Wilby, R., & Lane, S. (2020). Disruption of emergency response to vulnerable populations during floods. Nature Sustainability. https://doi.org/10.1038/s41893-020-0516-7

References

  • Alikhani, S., Nummi, P., & Ojala, A. (2021). Urban wetlands: A review on ecological and cultural values. Water, 13(22), 3301. https://doi.org/10.3390/w13223301
  • Bravo, D. (2013). ‘Water Square’ in Benthemplein. https://www.publicspace.org/works/-/project/h034-water-square-in-benthemplein
  • IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama [Eds.]. Cambridge University Press.
  • Jha, A. K., Lamond, J., & Bloch, R. (2012). Cities and flooding: A guide to integrated urban flood risk management for the 21st century. World Bank.
  • Morgan, M., & Fenner, R. (2017). A spatial evaluation of the multiple benefits of SuDS using blue-green infrastructure. Journal of Water Management.
  • O’Donnell, E., Woodhouse, R., & Thorne, C. (2017). Evaluating the multiple benefits of a Newcastle SuDS scheme. Proceedings of the ICE. Water Management.
  • Ramboll. (2013). Cloudburst Masterplan for Ladegårdså, Frederiksberg East & Vesterbro. Copenhagen. https://ramboll.com/-/media/c7f458c749fa47ddbd3fb37774ece65a.pdf
  • UN DESA. (2018). World urbanization prospects: The 2018 revision.
  • UN Habitat. (2016). Global public space toolkit: From global principles to local policies and practice. United Nations Human Settlements Programme (UN-Habitat).
  • UN Habitat. (2020). Public space inventory and assessment.
  • UNISDR. (2012). How To Make Cities More Resilient; A Handbook For Local Government Leaders. United Nations.
  • Wikipedia. (n.d.). Urban flooding. Wikipedia. https://en.wikipedia.org/wiki/Urban_flooding
  • Zevenbergen, C., Fu, D., & Pathirana, A. (2018). Transitioning to sponge cities: Challenges and opportunities to address urban water problems in China. Water, 10(9), 1230. https://doi.org/10.3390/w10091230

References

  • Akhtar, M., Ahmad, N., & Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. Journal of Hydrology, 355(1–4), 148–163. https://doi.org/10.1016/j.jhydrol.2008.03.015
  • Gupta, A. K., Negi, M., Nandy, S., Alatalo, J. M., Singh, V., & Pandey, R. (2019). Assessing the vulnerability of socio-environmental systems to climate change along an altitude gradient in the Indian Himalayas. Ecological Indicators, 106, 105512. https://doi.org/10.1016/j.ecolind.2019.105512
  • Haeberli, W., & Drenkhan, F. (2022). Future lake development in deglaciating mountain ranges. In Oxford Research Encyclopedia of Natural Hazard Science.
  • Hoy, A., Katel, O., Thapa, P., Dendup, N., & Matschullat, J. (2016). Climatic changes and their impact on socio-economic sectors in the Bhutan Himalayas: An implementation strategy. Regional Environmental Change, 16(5), 1401–1415. https://doi.org/10.1007/s10113-015-0868-0
  • Ivčević, A., Statzu, V., Satta, A., & Bertoldo, R. (2021). The future protection from the climate change-related hazards and the willingness to pay for home insurance in the coastal wetlands of West Sardinia, Italy. International Journal of Disaster Risk Reduction, 52, 101956. https://doi.org/10.1016/j.ijdrr.2020.101956
  • Laghari, J. (2013). Climate change: Melting glaciers bring energy uncertainty. Nature, 502(7473), 617–618. https://doi.org/10.1038/502617a
  • O’Neill, A. R. (2019). Evaluating high-altitude Ramsar wetlands in the Eastern Himalayas. Global Ecology and Conservation, 20, e00715. https://doi.org/10.1016/j.gecco.2019.e00715
  • Palomo, I. (2017). Climate change impacts on ecosystem services in high mountain areas: A literature review. Mountain Research and Development, 37(2), 179–187. https://doi.org/10.1659/MRD-JOURNAL-D-16-00110.1
  • Phartiyal, B., Singh, R., & Nag, D. (2018). Trans-and Tethyan Himalayan rivers. In The Indian Rivers (pp. 367–382). Springer.
  • Rashid, I., & Aneaus, S. (2020). Landscape transformation of an urban wetland in Kashmir Himalaya, India using high-resolution remote sensing data, geospatial modeling, and ground observations over the last 5 decades (1965–2018). Environmental Monitoring and Assessment, 192(10), 1–14. https://doi.org/10.1007/s10661-020-08597-4
  • Sharma, R. K., Kumar, R., Pradhan, P., & Sharma, A. (2022). Climate-induced glacier retreats and associated hazards: Need for robust glaciers and glacial lake management policy in Sikkim Himalaya, India. Climate Change, 161–182.
  • Sudmeier-Rieux, K., Arce-Mojica, T., Boehmer, H. J., Doswald, N., Emerton, L., Friess, D. A., … Walz, Y. (2021). Scientific evidence for ecosystem-based disaster risk reduction. Nature Sustainability, 4(9), 803–810. https://doi.org/10.1038/s41893-021-00732-4

References

  • DiDRR. (2021). Review of disability-inclusive disaster risk reduction policy and practice across Europe and Central Asia. European Disability Forum.
  • National Disaster Management Authority. (2019). National disaster management guidelines on disability inclusive disaster risk reduction.
  • SDMP. (2017). State disaster management plan 2017.
  • Sushil Gupta, R. S. (2014). Multi-hazard risk and vulnerability analysis for the city of Bhubaneswar, Odisha. United Nations Development Programme.