746
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A critical review on methods for time-dependent structural reliability

, , , &
Pages 91-106 | Received 29 Aug 2022, Accepted 27 Mar 2023, Published online: 04 May 2023

References

  • Andrieu-Renaud, C., Sudret, B., & Lemaire, M. (2004). The PHI2 method: A way to compute time-variant reliability. Reliability Engineering & System Safety, 84(1), 75–86. https://doi.org/10.1016/j.ress.2003.10.005
  • Benowitz, B. A., Shields, M. D., & Deodatis, G. (2015). Determining evolutionary spectra from non-stationary autocorrelation functions. Probabilistic Engineering Mechanics, 41, 73–88. https://doi.org/10.1016/j.probengmech.2015.06.004
  • Bocchini, P., & Deodatis, G. (2008). Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields. Probabilistic Engineering Mechanics, 23(4), 393–407. https://doi.org/10.1016/j.probengmech.2007.09.001
  • Breitung, K. (1988). Asymptotic crossing rates for stationary Gaussian vector processes. Stochastic Processes and Their Applications, 29(2), 195–207. https://doi.org/10.1016/0304-4149(88)90037-3
  • Cai, C. H., Lu, Z. H., Leng, Y., Zhao, Y. G., & Li, C. Q. (2021). Time-dependent structural reliability assessment for nonstationary non-Gaussian performance functions. Journal of Engineering Mechanics, 147(2), 04020145. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001883
  • Chen, L., & Letchford, C. W. (2005). Simulation of multivariate stationary Gaussian stochastic processes: Hybrid spectral representation and proper orthogonal decomposition approach. Journal of Engineering Mechanics, 131(8), 801–808. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:8(801)
  • Cho, H., Venturi, D., & Karniadakis, G. E. (2013). Karhunen–loève expansion for multi-correlated stochastic processes. Probabilistic Engineering Mechanics, 34, 157–167. https://doi.org/10.1016/j.probengmech.2013.09.004
  • Cramer, H., & Leadbetter, M. R., 1967. Frequency detection and related topics: Stationary and related stochastic processes, Ch. 14.
  • Dai, H., Zheng, Z., & Ma, H. (2019). An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loève and polynomial chaos expansion. Mechanical Systems and Signal Processing, 115, 1–13. https://doi.org/10.1016/j.ymssp.2018.05.026
  • Deodatis, G., & Micaletti, R. C. (2001). Simulation of highly skewed non-Gaussian stochastic processes. Journal of Engineering Mechanics, 127(12), 1284–1295. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1284)
  • Der Kiureghian, A., & Ke, J. B. (1988). The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 3(2), 83–91. https://doi.org/10.1016/0266-8920(88)90019-7
  • Der Kiureghian, A., & Zhang, Y. (1999). Space-variant finite element reliability analysis. Computer Methods in Applied Mechanics and Engineering, 168(1–4), 173–183. https://doi.org/10.1016/S0045-7825(98)00139-X
  • Ditlevsen, O. (1983). Gaussian upcrossings from safe convex polyhedrons. Journal of Engineering Mechanics, 109(1), 127–148. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(127)
  • Ditlevsen, O., & Madsen, H. O. (1996). Structural reliability methods (Vol. 178). Wiley.
  • Firouzi, A., Yang, W., & Li, C. Q. (2018). Efficient solution for calculation of upcrossing rate of nonstationary Gaussian process. Journal of Engineering Mechanics, 144(4), 04018015. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001420
  • Ghanem, R. G., & Spanos, P. D. (2003). Stochastic finite elements: A spectral approach. Courier Corporation.
  • Grigoriu, M. (1982). Approximate analysis of complex reliability problems. Structural Safety, 1(4), 277–288. https://doi.org/10.1016/0167-4730(82)90004-2
  • Grigoriu, M. (1984). Crossings of non-Gaussian translation processes. Journal of Engineering Mechanics, 110(4), 610–620. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(610)
  • Grigoriu, M. (1995). Applied non-gaussian processes: Examples, theory, simulation, linear random vibration, and MATLAB solutions(Book). Prentice Hall, Inc.
  • Hagen, Ø., & Tvedt, L. (1991). Vector process out-crossing as parallel system sensitivity measure. Journal of Engineering Mechanics, 117(10), 2201–2220. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2201)
  • He, J. (2015). Approximate method for estimating extreme value responses of nonlinear stochastic dynamic systems. Journal of Engineering Mechanics, 141(7), 04015009. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000901
  • He, J., & Zhao, Y. G. (2007). First passage times of stationary non-Gaussian structural responses. Computers & Structures, 85(7–8), 431–436. https://doi.org/10.1016/j.compstruc.2006.09.009
  • Huang, N. E., & Long, S. R. (1980). An experimental study of the surface elevation probability distribution and statistics of wind-generated waves. Journal of Fluid Mechanics, 101(1), 179–200.
  • Hu, Z., & Du, X. (2013). A sampling approach to extreme value distribution for time-dependent reliability analysis. Journal of Mechanical Design, 135(7), 071003. https://doi.org/10.1115/1.4023925
  • Kim, H., & Shields, M. D. (2015). Modeling strongly non-Gaussian non-stationary stochastic processes using the iterative translation approximation method and Karhunen–Loève expansion. Computers & Structures, 161, 31–42. https://doi.org/10.1016/j.compstruc.2015.08.010
  • Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences (Vol. 470). John Wiley & Sons.
  • Langley, R. S. (1988). A first passage approximation for normal stationary random processes. Journal of Sound and Vibration, 122(2), 261–275. https://doi.org/10.1016/S0022-460X(88)80353-5
  • Li, C. Q. (1995). Computation of the failure probability of deteriorating structural systems. Computers & Structures, 56(6), 1073–1079. https://doi.org/10.1016/0045-7949(94)00947-2
  • Li, C. C., & Der Kiureghian, A. (1993). Optimal discretization of random fields. Journal of Engineering Mechanics, 119(6), 1136–1154. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
  • Li, C. Q., Firouzi, A., & Yang, W. (2016). Closed-form solution to first passage probability for nonstationary lognormal processes. Journal of Engineering Mechanics, 142(12), 04016103. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001160
  • Li, C. Q., & Melchers, R. E. (1993). Upcrossings from convex polyhedrons for nonstationary Gaussian processes. Journal of Engineering Mechanics, 119(11), 2354–2361. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2354)
  • Lindgren, G. (1980). Extreme values and crossings for the x 2-process and other functions of multidimensional gaussian processes, by reliability applications. Advances in Applied Probability, 12(3), 746–774. https://doi.org/10.2307/1426430
  • Lind, N. C., & Hong, H. P. (1991). Tail entropy approximations. Structural Safety, 10(4), 297–306. https://doi.org/10.1016/0167-4730(91)90036-9
  • Li, C. Q., & Yang, W. (2022). Time-dependent reliability theory and its applications. Elsevier.
  • Low, Y. M. (2013). A new distribution for fitting four moments and its applications to reliability analysis. Structural Safety, 42, 12–25. https://doi.org/10.1016/j.strusafe.2013.01.007
  • Lu, Z. H., Zhao, Z., Zhang, X. Y., Li, C. Q., Ji, X. W., & Zhao, Y. G. (2020). Simulating stationary non-Gaussian processes based on unified Hermite polynomial model. Journal of Engineering Mechanics, 146(7), 04020067. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001806
  • Melchers, R. E., & Beck, A. T. (2018). Structural reliability analysis and prediction. John wiley & sons.
  • Mirfendereski, D., 1995. Stochastic modeling and response prediction of MEMS (Doctoral dissertation, University of California.
  • Naess, A. (1990). Approximate first-passage and extremes of narrow-band Gaussian and non-Gaussian random vibrations. Journal of Sound and Vibration, 138(3), 365–380. https://doi.org/10.1016/0022-460X(90)90592-N
  • Papadimitriou, K. M. (1991). Stochastic characterization of strong ground motion and applications to structural response. California Institute of Technology.
  • Phoon, K. K., Huang, H. W., & Quek, S. T. (2005). Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion. Probabilistic Engineering Mechanics, 20(2), 188–198. https://doi.org/10.1016/j.probengmech.2005.05.007
  • Phoon, K. K., Huang, S. P., & Quek, S. T. (2002). Simulation of second-order processes using Karhunen–Loeve expansion. Computers & Structures, 80(12), 1049–1060. https://doi.org/10.1016/S0045-7949(02)00064-0
  • Ping, M. H., Han, X., Jiang, C., & Xiao, X. Y. (2019). A time-variant extreme-value event evolution method for time-variant reliability analysis. Mechanical Systems and Signal Processing, 130, 333–348. https://doi.org/10.1016/j.ymssp.2019.05.009
  • Rackwitz, R. (1984). Failure rates for general systems including structural components. Reliability Engineering, 9(4), 229–242. https://doi.org/10.1016/0143-8174(84)90052-0
  • Rackwitz, R. (2001). Reliability analysis—a review and some perspectives. Structural Safety, 23(4), 365–395. https://doi.org/10.1016/S0167-4730(02)00009-7
  • Ramberg, J. S., & Schmeiser, B. W. (1974). An approximate method for generating asymmetric random variables. Communications of the ACM, 17(2), 78–82. https://doi.org/10.1145/360827.360840
  • Rice, S. O. (1945). Mathematical analysis of random noise. Bell System Technical Journal, 24(1), 46–156. https://doi.org/10.1002/j.1538-7305.1945.tb00453.x
  • Shields, M. D., & Deodatis, G. (2013). Estimation of evolutionary spectra for simulation of non-stationary and non-Gaussian stochastic processes. Computers & Structures, 126, 149–163. https://doi.org/10.1016/j.compstruc.2013.02.007
  • Shinozuka, M. (1971). Simulation of multivariate and multidimensional random processes. The Journal of the Acoustical Society of America, 49(1B), 357–368. https://doi.org/10.1121/1.1912338
  • Sudret, B. (2008). Analytical derivation of the upcrossing rate in time-variant reliability problems. Structure and Infrastructure Engineering, 4(5), 353–362. https://doi.org/10.1080/15732470701270058
  • Sudret, B., & Der Kiureghian, A., 2000. Stochastic finite element methods and reliability: A state-of-the-artreport (pp. 18–34). Department of Civil and Environmental Engineering, University of California.
  • Vanmarcke, E. (2010). Random fields: Analysis and synthesis. World scientific.
  • Vanmarcke, E. H. (1975). On the distribution of the first-passage time for normal stationary random processes. Journal of Applied Mechanics, 42(1), 215–220. https://doi.org/10.1115/1.3423521
  • Veneziano, D., Cornell, C. A., & Grigoriu, M. (1977). Vector-process models for system reliability. Journal of the Engineering Mechanics Division, 103(3), 441–460. https://doi.org/10.1061/JMCEA3.0002239
  • Vořechovský, M. (2008). Simulation of simply cross correlated random fields by series expansion methods. Structural Safety, 30(4), 337–363. https://doi.org/10.1016/j.strusafe.2007.05.002
  • Wang, Z., & Chen, W. (2017). Confidence-based adaptive extreme response surface for time-variant reliability analysis under random excitation. Structural Safety, 64, 76–86. https://doi.org/10.1016/j.strusafe.2016.10.001
  • Winterstein, S. R. (1988). Nonlinear vibration models for extremes and fatigue. Journal of Engineering Mechanics, 114(10), 1772–1790. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1772)
  • Xu, H., & Rahman, S. (2004). A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics. International Journal for Numerical Methods in Engineering, 61(12), 1992–2019. https://doi.org/10.1002/nme.1135
  • Yamazaki, F., & Shinozuka, M. (1988). Digital generation of non-Gaussian stochastic fields. Journal of Engineering Mechanics, 114(7), 1183–1197. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:7(1183)
  • Yang, L., & Gurley, K. R. (2015). Efficient stationary multivariate non-Gaussian simulation based on a Hermite PDF model. Probabilistic Engineering Mechanics, 42, 31–41. https://doi.org/10.1016/j.probengmech.2015.09.006
  • Yi, S. R., & Song, J. (2021). First-passage probability estimation by Poisson branching process model. Structural Safety, 90, 102027. https://doi.org/10.1016/j.strusafe.2020.102027
  • Zhang, J., & Ellingwood, B. (1994). Orthogonal series expansions of random fields in reliability analysis. Journal of Engineering Mechanics, 120(12), 2660–2677. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2660)
  • Zhang, D., Han, X., Jiang, C., Liu, J., & Li, Q. (2017). Time-dependent reliability analysis through response surface method. Journal of Mechanical Design, 139(4), 041404. https://doi.org/10.1115/1.4035860
  • Zhang, X. Y., Lu, Z. H., Wu, S. Y., & Zhao, Y. G. (2021). An efficient method for time-variant reliability including finite element analysis. Reliability Engineering & System Safety, 210, 107534. https://doi.org/10.1016/j.ress.2021.107534
  • Zhang, X. Y., Zhao, Y. G., & Lu, Z. H. (2019). Unified Hermite polynomial model and its application in estimating non-Gaussian processes. Journal of Engineering Mechanics, 145(3), 04019001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001577
  • Zhao, Y. G., & Lu, Z. H. (2007). Fourth-moment standardization for structural reliability assessment. Journal of Structural Engineering, 133(7), 916–924. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(916)
  • Zhao, Y. G., & Lu, Z. H. (2021). Structural reliability: Approaches from perspectives of statistical moments. John Wiley & Sons.
  • Zhao, Y. G., Zhang, L. W., Lu, Z. H., & He, J. (2019). First passage probability assessment of stationary non-Gaussian process using the third-order polynomial transformation. Advances in Structural Engineering, 22(1), 187–201. https://doi.org/10.1177/1369433218782873
  • Zheng, Z., & Dai, H. (2017). Simulation of multi-dimensional random fields by Karhunen–Loève expansion. Computer Methods in Applied Mechanics and Engineering, 324, 221–247. https://doi.org/10.1016/j.cma.2017.05.022
  • Zwillinger, D. (2018). CRC standard mathematical tables and formulas. Chapman and hall/CRC.