153
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A network-level management system to mitigate the global warming potential of road pavements

, , &
Pages 49-62 | Received 06 Jan 2023, Accepted 21 Aug 2023, Published online: 30 Aug 2023

References

  • Abaza, K. (2018). Empirical-markovian model for predicting the overlay design thickness for asphalt concrete pavement. Road Materials and Pavement Design, 19(7), 1617–1635. https://doi.org/10.1080/14680629.2017.1338188
  • Al-Saadi, I., Wang, H., Chen, X., Lu, P., & Jasim, A. (2020). Multi-objective optimization of pavement preservation strategy considering agency cost and environmental impact. International Journal of Sustainable Transportation, 15(11), 826–836. https://doi.org/10.1080/15568318.2020.1821413
  • ASCE. (2017, January 17). Roads [report card for America’s infrastructure]. Asce’s 2021 Infrastructure Report Card. https://infrastructurereportcard.org/cat-item/roads/
  • AzariJafari, H., Yahia, A., & Ben Amor, M. (2016). Life cycle assessment of pavements: Reviewing research challenges and opportunities. Journal of Cleaner Production, 112, 2187–2197. https://doi.org/10.1016/j.jclepro.2015.09.080
  • Barth, M., An, F., Younglove, T., Scora, G., Levine, C., Marc, R., & Wenzel, T. (2000). Development of a comprehensive modal emissions mode (NCHRP project 25-11). National Cooperative Highway Research Program.
  • Ben Hcine, M., & Bouallegue, R. (2014). Fitting the log skew normal to the sum of independent lognormals distribution. Computer Science & Information Technology (CS & IT), 54–68. https://doi.org/10.5121/csit.2014.41305
  • Elkins, G. E., & Ostrom, B. (2021). Long-term pavement performance information management System user guide (FHWA-HRT-21-038). U.S. Department of Transportation, Federal Highway Administration. https://rosap.ntl.bts.gov/view/dot/55790
  • France-Mensah, J., & O’Brien, W. J. (2019). Developing a sustainable pavement management Plan: Tradeoffs in road condition, user costs, and greenhouse gas emissions. Journal of Management in Engineering, 35(3), 04019005. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000686
  • Gosse, C. A., Smith, B. L., & Clarens, A. F. (2013). Environmentally preferable pavement management systems. Journal of Infrastructure Systems, 19(3), 315–325. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000118
  • Grael, P. F. F., Oliveira, L. S. B. L., Oliveira, D. S. B. L., & Bezerra, B. S. (2021). Life cycle inventory and impact assessment for an asphalt pavement road construction—a case study in Brazil. The International Journal of Life Cycle Assessment, 26(2), 402–416. https://doi.org/10.1007/s11367-020-01842-5
  • Jackson, N. (2008). Development of revised pavement condition indices for portland cement concrete pavement for the WSDOT pavement management System. Washington State Department of Transportation. https://www.wsdot.wa.gov/research/reports/fullreports/682.3.pdf
  • Jiang, R., & Wu, P. (2019). Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions. Transportation Research, Part D: Transport & Environment, 77, 148–163. https://doi.org/10.1016/j.trd.2019.10.010
  • Jiang, R., Wu, P., & Wu, C. (2021). Selecting the optimal network-level pavement maintenance budget scenario based on sustainable considerations. Transportation Research, Part D: Transport & Environment, 97, 102919. https://doi.org/10.1016/j.trd.2021.102919
  • Lee, J., & Madanat, S. (2017). Optimal policies for greenhouse gas emission minimization under multiple agency budget constraints in pavement management. Transportation Research, Part D: Transport & Environment, 55, 39–50. https://doi.org/10.1016/j.trd.2017.06.009
  • Lee, J., Madanat, S., & Reger, D. (2016). Pavement systems reconstruction and resurfacing policies for minimization of life‐cycle costs under greenhouse gas emissions constraints. Transportation Research Part B: Methodological, 93, 618–630. https://doi.org/10.1016/j.trb.2016.08.016
  • Loijos, A., Santero, N., & Ochsendorf, J. (2013). Life cycle climate impacts of the US concrete pavement network. Resources, Conservation and Recycling, 72, 76–83. https://doi.org/10.1016/j.resconrec.2012.12.014
  • Louhghalam, A., Akbarian, M., & Ulm, F. J. (2014). Scaling relationships of dissipation-induced pavement–vehicle interactions. Transportation Research Record: Journal of the Transportation Research Board, 2457(1), 95–104. https://doi.org/10.3141/2457-10
  • Louhghalam, A., Akbarian, M., & Ulm, F. J. (2017). Carbon management of infrastructure performance: Integrated big data analytics and pavement-vehicle-interactions. Journal of Cleaner Production, 142, 956–964. https://doi.org/10.1016/j.jclepro.2016.06.198
  • Manosalvas-Paredes, M., Roberts, R., Barriera, M., & Mantalovas, K. (2019). Towards more sustainable pavement management practices using embedded sensor technologies. Infrastructures, 5(1), 4. https://doi.org/10.3390/infrastructures5010004
  • Medury, A., & Madanat, S. (2014). Simultaneous network optimization approach for pavement management systems. Journal of Infrastructure Systems, 20(3), 04014010. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000149
  • Menendez, J. R., Siabil, S. Z., Narciso, P., & Gharaibeh, N. G. (2013). Prioritizing infrastructure maintenance and rehabilitation activities under various budgetary scenarios: Evaluation of worst-first and benefit–cost analysis approaches. Transportation Research Record: Journal of the Transportation Research Board, 2361(1), 56–62. https://doi.org/10.3141/2361-07
  • Moretti, L. (2022). How road cross-sections affect the environmental impacts from cradle to grave. Cleaner Environmental Systems, 6, 100088. https://doi.org/10.1016/j.cesys.2022.100088
  • Noshadravan, A., Wildnauer, M., Gregory, J., & Kirchain, R. (2013). Comparative pavement life cycle assessment with parameter uncertainty. Transportation Research, Part D: Transport & Environment, 25, 131–138. https://doi.org/10.1016/j.trd.2013.10.002
  • Ogwang, A., Madanat, S., & Horvath, A. (2019). Optimal cracking threshold resurfacing policies in asphalt pavement management to minimize costs and emissions. Journal of Infrastructure Systems, 25(2), 04019003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000469
  • Reger, D., Madanat, S., & Horvath, A. (2014). Economically and environmentally informed policy for road resurfacing: Tradeoffs between costs and greenhouse gas emissions. Environmental Research Letters, 9(10), 104020. https://doi.org/10.1088/1748-9326/9/10/104020
  • Reger, D., Madanat, S., & Horvath, A. (2015). The effect of agency budgets on minimizing greenhouse gas emissions from road rehabilitation policies. Environmental Research Letters, 10(11), 114007. https://doi.org/10.1088/1748-9326/10/11/114007
  • Renard, S., Corbett, B., & Swei, O. (2021). Minimizing the global warming impact of pavement infrastructure through reinforcement learning. Resources, Conservation and Recycling, 167, 105240. https://doi.org/10.1016/j.resconrec.2020.105240
  • Santero, N. J., & Horvath, A. (2009). Global warming potential of pavements. Environmental Research Letters, 4(3), 034011. https://doi.org/10.1088/1748-9326/4/3/034011
  • Santero, N. J., Masanet, E., & Horvath, A. (2011). Life-cycle assessment of pavements part II: Filling the research gaps. Resources, Conservation and Recycling, 55(9), 810–818. https://doi.org/10.1016/j.resconrec.2011.03.009
  • Sathaye, N., & Madanat, S. (2012). A bottom-up optimal pavement resurfacing solution approach for large-scale networks. Transportation Research Part B: Methodological, 46(4), 520–528. https://doi.org/10.1016/j.trb.2011.12.001
  • Shani, P., Chau, S., & Swei, O. (2021). All roads lead to sustainability: Opportunities to reduce the life-cycle cost and global warming impact of U.S. roadways. Resources, Conservation and Recycling, 173, 105701. https://doi.org/10.1016/j.resconrec.2021.105701
  • Swei, O., Gregory, J., & Kirchain, R. (2018). Does pavement degradation follow a random walk with drift? Evidence from variance ratio tests for pavement roughness. Journal of Infrastructure Systems, 24(4), 04018027. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000450
  • Torres-Machi, C., Osorio-Lird, A., Chamorro, A., Videla, C., Tighe, S. L., & Mourgues, C. (2018). Impact of environmental assessment and budgetary restrictions in pavement maintenance decisions: Application to an urban network. Transportation Research, Part D: Transport & Environment, 59, 192–204. https://doi.org/10.1016/j.trd.2017.12.017
  • Torres-Machi, C., Pellicer, E., Yepes, V., & Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148, 90–102. https://doi.org/10.1016/j.jclepro.2017.01.100
  • Virginia Department of Transportation. (2019). Commonwealth of Virginia Transportation Asset Management Plan. https://www.virginiadot.org/projects/resources/legstudies/2019_-_Final_TAMP.pdf
  • Wang, Z., & Pyle, T. (2019). Implementing a pavement management system: The caltrans experience. International Journal of Transportation Science and Technology, 8(3), 251–262. https://doi.org/10.1016/j.ijtst.2019.02.002
  • Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230. https://doi.org/10.1007/s11367-016-1087-8
  • Wong, E., & Swei, O. (2021). New construction cost indices to improve Highway management. Journal of Management in Engineering, 37(4), 1943–5479.000092404021030. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000924
  • Xu, X., Akbarian, M., Gregory, J., & Kirchain, R. (2019). Role of the use phase and pavement-vehicle interaction in comparative pavement life cycle assessment as a function of context. Journal of Cleaner Production, 230, 1156–1164. https://doi.org/10.1016/j.jclepro.2019.05.009
  • Xu, X., Swei, O., Xu, L., Schlosser, C. A., Gregory, J., & Kirchain, R. (2020). Quantifying location-specific impacts of pavement albedo on radiative forcing using an analytical approach. Environmental Science & Technology, 54(4), 2411–2421. https://doi.org/10.1021/acs.est.9b04556
  • Zhang, H., Keoleian, G. A., & Lepech, M. D. (2013). Network-level pavement asset management System integrated with life-cycle analysis and life-cycle optimization. Journal of Infrastructure Systems, 19(1), 99–107. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000093
  • Zhang, K., Batterman, S., & Dion, F. (2011). Vehicle emissions in congestion: Comparison of work zone, rush hour and free-flow conditions. Atmospheric Environment, 45(11), 1929–1939. https://doi.org/10.1016/j.atmosenv.2011.01.030
  • Ziyadi, M., Ozer, H., Kang, S., & Al-Qadi, I. L. (2018). Vehicle energy consumption and an environmental impact calculation model for the transportation infrastructure systems. Journal of Cleaner Production, 174, 424–436. https://doi.org/10.1016/j.jclepro.2017.10.292

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.