1,851
Views
3
CrossRef citations to date
0
Altmetric
Mito Communication

Genetic difference between African and Japanese scombropid populations based on cytochrome c oxidase subunit I gene sequences

, , , , , , , , & show all
Pages 1016-1020 | Received 19 Jun 2018, Accepted 10 Feb 2019, Published online: 23 Feb 2019

References

  • Bleeker P. 1854. Nieuwe nalezingen op de ichthyologie van Japan. Verh Bat Gen. 26:1–132. pls. 1–8.
  • Chen W, Ma X, Shen Y, Mao Y, He S. 2015. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA Barcoding. Sci Rep. 5:17437.
  • Dhar B, Ghosh SK. 2015. Genetic assessment of ornamental fish species from North East India. Gene. 555:382–392.
  • Fujikura K, Lindsay D, Kitazato H, Nishida S, Shirayama Y. 2010. Marine biodiversity in Japanese waters. PLoS One. 5:e11836.
  • Hebert PDN, Ratnasingham S, deWard JR. 2003a. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B. 270:S96–S99.
  • Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003b. Biological identifications through DNA barcodes. Proc Biol Sci. 270:313–321.
  • Heemstra PC. 1986. Scombropidae. In: Smith MM, Heemstra PC, editors. Smiths’ sea fishes. Berlin: Springer-Verlag; p. 563.
  • Itoi S, Mochizuki Y, Tanaka M, Oyama H, Tsunashima T, Yamada R, Shishido H, Masuda Y, Nakai S, Takai N, et al. 2018. Species composition of the genus Scombrops (Teleostei, Scombropidae) in the waters around the Japanese Archipelago: detection of a cryptic species. Mitochondrial DNA Part A. 29:1293–1300.
  • Itoi S, Odaka J, Noguchi S, Noda T, Yuasa K, Muraki T, Tanabe T, Takai N, Yoshihara K, Sugita H. 2011. Genetic homogeneity between adult and juvenile populations of Scombrops gilberti (Percoid, Scombropidae) in the Pacific Ocean off the Japanese Islands. Fish Sci. 77:975–981.
  • Itoi S, Odaka J, Yuasa K, Akeno S, Nakajima A, Suenaga A, Noda T, Akimoto S, Myojin T, Ikeda Y, et al. 2010. Distribution and species composition of juvenile and adult scombropids (Teleostei, Scombropidae) in Japanese coastal waters. J Fish Biol. 76:369–378.
  • Itoi S, Takai N, Naya S, Dairiki K, Yamada A, Akimoto S, Yoshihara K, Sugita H. 2008. A species identification method for Scombrops boops and Scombrops gilberti based on polymerase chain reaction-restriction fragment length polymorphism analysis of mitochondrial DNA. Fish Sci. 74:503–510.
  • Jordan DS, Snyder JD. 1901a. A list of Japanese fishes. Proc U S Nat Mus. 23:739–769. pls 31–38.
  • Jordan DS, Snyder JD. 1901b. Cardinal fishes of Japan. Proc U S Nat Mus. 24:891–913. pls 63–64.
  • Khedkar GD, Jamdade R, Naik S, David L, Haymer D. 2014. DNA barcodes for the fishes of the Narmada, one of India's longest rivers. PLoS One. 9:e101460.
  • Kress WJ, García-Robledo C, Uriarte M, Erickson DL. 2015. DNA barcodes for ecology, evolution, and conservation. Trends Ecol. Evol. (Amst.). 30:25–35.
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33:1870–1874.
  • Ma H, Ma C, Ma L. 2012. Molecular identification of genus Scylla (Decapoda: Portunidae) based on DNA barcoding and polymerase chain reaction. Biochem Syst Ecol. 41:41–47.
  • Mochizuki K. 1979. Age and growth of the two Japanese scombropids, Scombrops boops and S. gilberti. Jpn J Ichthyol. 26:62–68.
  • Mochizuki Y, Yamada R, Shishido H, Masuda Y, Nakai S, Takai N, Itoi S, Sugita H. 2017. Complete mitochondrial genome of an undescribed gnomefish of the genus Scombrops (Teleostei, Scombropidae) from southern waters off Kyushu Island, Japan. Mitochondrial DNA Part B. 2:106–108.
  • Noguchi S, Itoi S, Takai N, Noda T, Myojin T, Yoshihara K, Sugita H. 2012. Population genetic structure of Scombrops boops (Percoid, Scombropidae) around the Japanese archipelago inferred from the cytochrome b gene sequence in mitochondrial DNA. Mitochondrial DNA. 23:233–239.
  • Oshima M. 1939. Fish. Tokyo: Sanseido. 661 pp. (in Japanese).
  • Poey F. 1860. Poissons de Cuba. Mem Hist Nat Isla Cuba. 2:115–356.
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7:539.
  • Steinke D, Connell AD, Hebert PDN. 2016. Linking adults and immatures of South African marine fishes. Genome. 59:959–967.
  • Steinke D, Zemlak TS, Boutillier JA, Hebert PDN. 2009. DNA barcoding of Pacific Canada’s fishes. Mar Biol. 156:2641–2647.
  • Takai N, Kozuka Y, Tanabe T, Sagara Y, Ichihashi M, Nakai S, Suzuki M, Mano N, Itoi S, Asahina K, et al. 2014. Habitat use of the gnomefishes Scombrops boops and S. gilberti in the northwestern Pacific Ocean in relation to reproductive strategy. Aquat Biol. 21:109–120.
  • Tanaka S. 1931. On the distribution of fishes in Japanese waters. J Fac Sci Imp Univ Tokyo Sec 4 Zool. 3:1–90. pls 1–3.
  • Tsunashima T, Itoi S, Abe K, Takigawa T, Inoue S, Kozen T, Ono N, Noguchi S, Nakai S, Takai N, et al. 2016a. The complete mitochondrial genome of the gnomefish Scombrops boops (Teleostei, Perciformes, Scombropidae) from the Pacific Ocean off the Japanese Islands. Mitochondrial DNA Part A. 27:785–786.
  • Tsunashima T, Yamada R, Abe K, Noguchi S, Itoi S, Nakai S, Takai N, Sugita H. 2016b. Phylogenetic position of Scombropidae within teleostei: the complete mitochondrial genome of the gnomefish, Scombrops gilberti. Mitochondrial DNA Part A. 27:3446–3448.
  • Ward RD, Costa FO, Holmes BH, Steinke D. 2008. DNA barcoding of shared fish species from the North Atlantic and Australasia: minimal divergence for most taxa, but Zeus faber and Lepidopus caudatus each probably constitute two species. Aquat Biol. 3:71–78.
  • Yasuda F, Mochizuki K, Kawajiri M, Nose Y. 1971. On the meristic and morphometric differences between Scombrops boops and S. gilberti. Jpn J Ichthyol. 18:118–124.
  • Zhang J, Hanner R. 2012. Molecular approach to the identification of fish in the South China Sea. PLoS One. 7:e30621.
  • Zhu SR, Fu JJ, Wang W, Li JL. 2013. Identification of Channa species using the partial cytochrome c oxidase subunit I (COI) gene as a DNA barcoding marker. Biochem Syst Ecol. 51:117–123.