Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 1, 2016 - Issue 2
1,602
Views
4
CrossRef citations to date
0
Altmetric
Review

Challenges confronting precision medicine in the context of inherited retinal disorders

&
Pages 195-205 | Received 15 Dec 2015, Accepted 05 Feb 2016, Published online: 03 Mar 2016

References

  • Das SK, Menezes ME, Bhatia S, et al. Gene therapies for cancer: strategies, challenges and successes. J Cell Physiol. 2015;230(2):259–271.
  • Gerstung M, Beisel C, Rechsteiner M, et al. Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nat Commun. 2012;3:811.
  • Pearce JM. The ophthalmoscope: Helmholtz’s Augenspiegel. Eur Neurol. 2009;61:244–249.
  • Dryja TP, McGee TL, Reichel E, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343(6256):364–366.
  • Daiger SP, Sullivan LS, Bowne SJ. RETNET. Available from: https://sph.uth.edu/retnet/
  • Chiang JP, Trzupek K. The current status of molecular diagnosis of inherited retinal dystrophies. Curr Opin Ophthalmol. 2015;26(5):346–351.
  • Chiang JP, Lamey T, McLaren T, et al. Progress and prospects of next-generation sequencing testing for inherited retinal dystrophy. Expert Rev Mol Diagn. 2015;15(10):1269–1275.
  • Karali M, Banfi S. Inherited retinal dystrophies: the role of gene expression regulators. Int J Biochem Cell Biol. 2015;61:115–119.
  • Pierce EA, Bennett J. The Status of RPE65 gene therapy trials: safety and efficacy. Cold Spring Harb Perspect Med. 2015;5(9):a017285.
  • Riazuddin SA, Zulfiqar F, Zhang Q, et al. Autosomal recessive retinitis pigmentosa is associated with mutations in RP1 in three consanguineous Pakistani families. Invest Ophthalmol Vis Sci. 2005;46(7):2264–2270.
  • Rivolta C, Sweklo EA, Berson EL, et al. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss. Am J Hum Genet. 2000;66:1975–1978.
  • Estrada-Cuzcano A, Koenekoop RK, Senechal A, et al. BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to Bardet-Biedl syndrome. Arch Ophthalmol. 2012;130(11):1425–1432.
  • Xu M, Yang L, Wang F, et al. Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet. 2015;134(10):1069–1078.
  • Bujakowska KM, Zhang Q, Siemiatkowska AM, et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet. 2015;24:230–242.
  • Shankar SP, Birch DG, Ruiz RS, et al. Founder effect of a c.828+3A>T splice site mutation in peripherin 2 (PRPH2) causing autosomal dominant retinal dystrophies. JAMA Ophthalmol. 2015;133(5):511–517.
  • Gorin MB, Jackson KE, Ferrell RE, et al. A peripherin/retinal degeneration slow mutation (Pro-210-Arg) associated with macular and peripheral retinal degeneration. Ophthalmology. 1995;102(2):246–255.
  • Kohl S, Christ-Adler M, Apfelstedt-Sylla E, et al. RDS/peripherin gene mutations are frequent causes of central retinal dystrophies. J Med Genet. 1997;34(8):620–626.
  • Gal A, Xu S, Piczenik Y, et al. Gene for autosomal dominant congenital stationary night blindness maps to the same region as the gene for the beta-subunit of the rod photoreceptor cGMP phosphodiesterase (PDEB) in chromosome 4p16.3. Hum Mol Genet. 1994;3:323–325.
  • Sergouniotis PI, Sohn EH, Li Z, et al. Phenotypic variability in RDH5 retinopathy (fundus albipunctatus). Ophthalmology. 2011;118(8):1661–1670.
  • Nakazawa M, Wada Y, Tamai M. Arrestin gene mutations in autosomal recessive retinitis pigmentosa. Arch Ophthalmol. 1998;116(4):498–501.
  • Eisenberger T, Slim R, Mansour A, et al. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3. Orph J Rare Dis. 2012;7:59–71.
  • Nishiguchi KM, Avila-Fernandez A, Van Huet RA, et al. Exome sequencing extends the phenotypic spectrum for ABHD12 mutations: from syndromic to nonsyndromic retinal degeneration. Ophthalmology. 2014;121(8):1620–1627.
  • Tsang SH, Burke T, Oll M, et al. Whole exome sequencing identifies CRB1 defect in an unusual maculopathy phenotype. Ophthalmology. 2014;121(9):1773–1782.
  • Kruk J, Kubasik-Kładna K, Aboul-Einein HY. The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini Rev Med Chem. 2015 Nov 19; 16(3):241–257.
  • Perez VL, Saeed AM, Tan Y, et al. The eye: A window to the soul of the immune system. J Autoimmun. 2013;45:7–14.
  • Suspitsin EN, Sokolenko AP, Lyazina LV, et al. Exome sequencing of a family with Bardet-Biedl syndrome identifies the common Russian mutation c.1967_1968delTAinsC in BBS7. Mol Syndromol. 2015;6(2):96–98.
  • Khan AO, Bergmann C, Eisenberger T, et al. A TULP1 founder mutation, p.Gln301*, underlies a recognizable congenital rod-cone dystrophy phenotype on the Arabian Peninsula. Br J Ophthalmol. 2015;99(4):488–492.
  • Venturini G, Koskiniemi-Kuendig H, Harper S, et al. Two specific mutations are prevalent causes of recessive retinitis pigmentosa in North American patients of Jewish ancestry. Genet Med. 2015;17(4):285–290.
  • Doucette L, Green J, Black C, et al. Molecular genetics of achromatopsia in Newfoundland reveal genetic heterogeneity, founder effects and the first cases of Jalili syndrome in North America. Ophthalmic Genet. 2013;34(3):119–129.
  • Ebermann I, Koenekoop RK, Lopez I, et al. An USH2A founder mutation is the major cause of Usher syndrome type 2 in Canadians of French origin and confirms common roots of Quebecois and Acadians. Eur J Hum Genet. 2009;17(1):80–84.
  • Auslender N, Bandah D, Rizel L, et al. Four USH2A founder mutations underlie the majority of Usher syndrome type 2 cases among non-Ashkenazi Jews. Genet Test. 2008;12(2):289–294.
  • Ebermann I, Lopez I, Bitner-Glindzicz M, et al. Deafblindness in French Canadians from Quebec: a predominant founder mutation in the USH1C gene provides the first genetic link with the Acadian population. Genome Biol. 2007;8(4):R47.
  • Ouyang XM, Hejtmancik JF, Jacobson SG, et al. USH1C: a rare cause of USH1 in a non-Acadian population and a founder effect of the Acadian allele. Clin Genet. 2003;63(2):150–153.
  • Zito I, Morris A, Tyson P, et al. Sequence variation within the RPGR gene: evidence for a founder complex allele. Hum Mutat. 2000;16(3):273–274.
  • Gerber S, Rozet JM, Takezawa SI, et al. The photoreceptor cell-specific nuclear receptor gene (PNR) accounts for retinitis pigmentosa in the Crypto-Jews from Portugal (Marranos), survivors from the Spanish Inquisition. Hum Genet. 2000;107:276–284.
  • Tucker BA, Scheetz TE, Mullins RF, et al. Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci USA. 2011;108(34):E569–576.
  • Sundin OH, Yang JM, Li Y, et al. Genetic basis of total colourblindness among the Pingelapese islanders. Nat Genet. 2000;25(3):289–293.
  • Sullivan LS, Bowne SJ, Birch DG, et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest Ophthalmol Vis Sci. 2006;47(7):3052–3064.
  • Fernandez-San Jose P, Blanco-Kelly F, Corton M, et al. Prevalence of Rhodopsin mutations in autosomal dominant retinitis pigmentosa in Spain: clinical and analytical review in 200 families. Acta Ophthalmol. 2015;93(1):e38–44.
  • Fahim AT, Daiger SP, Weleber RG. Retinitis pigmentosa overview. GeneReviews. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1417/
  • Prokisch H, Hartig M, Hellinger R, et al. A population-based epidemiological and genetic study of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2007;48(9):4012–4018.
  • Zhao Y, Hosono K, Suto K, et al. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients. J Hum Genet. 2014;59(9):521–528.
  • Sharon D, Banin E. Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Mol Vis. 2015;21:783–792.
  • Goldberg AF, Molday RS. Defective subunit assembly underlies a digenic form of retinitis pigmentosa linked to mutations in peripherin/rds and rom-1. Proc Natl Acad Sci USA. 1996;93(24):13726–13730.
  • Zheng QY, Yan D, Ouyang XM, et al. Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet. 2005;14(1):103–111.
  • Wang F, Wang H, Tuan HF, et al. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum Genet. 2014;133(3):331–345.
  • DeLuca AP, Whitmore SS, Barnes J, et al. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Hum Mol Genet. 2016;25(1):44–56.
  • Glöckle N, Kohl S, Mohr J, et al. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet. 2014;22(1):99–104.
  • Weisschuh N, Mayer AK, Strom TM, et al. Mutation detection in patients with retinal dystrophies using targeted next generation sequencing. PLoS One. 2016;11(1):e0145951.
  • Carneiro MO, Russ C, Ross MG, et al. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics. 2012;13:375.
  • Machini K, Douglas J, Braxton A, et al. Genetic counselors’ views and experiences with the clinical integration of genome sequencing. J Genet Couns. 2014;23(4):496–505.
  • Good BM, Ainscough BJ, McMichael JF, et al. Organizing knowledge to enable personalization of medicine in cancer. Genome Biol. 2014;15:438.
  • Lewis RA Oculocutaneous Albinism Type 1. GeneReviews. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1166/
  • Chiang PW, Spector E, Tsai ACH. Ocularcutaneous albinism spectrum. Am J Med Genet Part A. 2009;149A:1590–1591.
  • Gonzaga-Jauregui C, Harel T, Gambin T, et al. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Reports. 2015;12:1169–1183.
  • Henn BM, Botigue LR, Bustamante CD, et al. Estimating the mutation load in human genomes. Nat Rev Genet. 2015;16:333–343.
  • Braun TA, Mullins RF, Wagner AH, et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum Mol Genet. 2013;22:5136–5145.
  • Zernant J, Xie YA, Ayuso C, et al. Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet. 2014;23:6797–6806.
  • Webb TR, Parfitt DA, Gardner JC, et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet. 2012;21(16):3647–3654.
  • Small KW, DeLuca AP, Whitmore SS, et al. North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13. Ophthalmol 2015; pii: S0161-6420(15)01153-7. doi:10.1016/j.ophtha.2015.10.006. [Epub ahead of print].
  • Nadeau JH. Modifier genes in mice and humans. Nat Rev Genet. 2001;2(3):165–174.
  • McKay GJ, Clarke S, Davis JA, et al. Pigmented paravenous chorioretinal atrophy is associated with a mutation within the crumbs homolog 1 (CRB1) gene. Invest Ophthalmol Vis Sci. 2005;46:322–328.
  • Strom SP, Gorin MB. Evaluation of autosomal dominant retinal dystrophy genes in an unaffected cohort suggests rare or private missense variants may often be benign. Mol Vis. 2013;19:980–985.
  • Venturini G, Rose AM, Shah AZ, et al. CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet. 2012;8(11):e1003040.
  • Bolk S, Pelet A, Hofstra RMW, et al. A human model for multigenic inheritance. Phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Pnas. 1997;1:268–273.
  • Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet in Med. 2013;15:565–574.