Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 1, 2016 - Issue 6
441
Views
12
CrossRef citations to date
0
Altmetric
Review

The role of metabolomics in precision medicine

Pages 517-532 | Received 09 Nov 2016, Accepted 13 Dec 2016, Published online: 23 Dec 2016

References

  • Antic T, DeMay RM. The fascinating history of urine examination. J Am Soc Cytopathol. 2014;3(2):103–107.
  • Berger D. A brief history of medical diagnosis and the birth of the clinical laboratory. Part 1 – ancient times through the 19th century. MLO Med Lab Obs. 1999;31(7):28–30. 32, 34-40.
  • Armstrong JA. Urinalysis in Western culture: a brief history. Kidney Int. 2007;71(5):384–387.
  • Abu-Asab M, Amri H, Micozzi MS. Avicenna’s medicine: a new translation of the 11th-century canon with practical applications for integrative health care. USA: Healing Arts Press; 2013.
  • Eknoyan G. Looking at the urine: the renaissance of an unbroken tradition. Am J Kidney Dis: Off J Nat Kidney Found. 2007;49(6):865–872.
  • Pinder U. Epiphanie medicorum, Speculum videndi urinas hominum, Clavis aperiendi portas pulsuum, Berillus discernendi causas et differentias febrium. Königstein, Germany. 1506.
  • Jones PM, Library B, Tibaldi C. Medieval medicine in illuminated manuscripts. London: British Library; 1998.
  • Oliver SG, Winson MK, Kell DB, et al. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9):373–378.
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–1189.
  • Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15(7):473–484. advance online publication.
  • Tebani A, Afonso C, Marret S, et al. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9):1555.
  • Hood L, Balling R, Auffray C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J. 2012;7(8):992–1001.
  • Osler W. The principles and practice of medicine. New York: D. Appleton and Company; 1893.
  • Loscalzo J, Barabasi AL. Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med. 2011;3(6):619–627.
  • Hartwell LH, Hopfield JJ, Leibler S, et al. From molecular to modular cell biology. Nature. 1999;402:C47–C52.
  • Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999;286(5439):509–512.
  • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.
  • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–795.
  • Dame Z, Aziat F, Mandal R, et al. The human saliva metabolome. Metabolomics. 2015;11(6):1–20.
  • Palmas F, Fattuoni C, Noto A, et al. The choice of amniotic fluid in metabolomics for the monitoring of fetus health. Expert Rev Mol Diagn. 2016;16(4):473–486.
  • Pijls KE, Smolinska A, Jonkers DMAE, et al. A profile of volatile organic compounds in exhaled air as a potential non-invasive biomarker for liver cirrhosis. Sci Rep. 2016;6:19903.
  • Koulman A, Prentice P, Wong MC, et al. The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism. Metabolomics. 2014;10(5):1018–1025.
  • Tebani A, Abily-Donval L, Afonso C, et al. Clinical metabolomics: the new metabolic window for inborn errors of metabolism investigations in the post-genomic era. Int J Mol Sci. 2016;17:7.
  • Do KT, Kastenmüller G, Mook-Kanamori DO, et al. Network-based approach for analyzing intra- and interfluid metabolite associations in human blood, urine, and saliva. J Proteome Res. 2015;14(2):1183–1194.
  • Torell F, Bennett K, Cereghini S, et al. Multi-organ contribution to the metabolic plasma profile using hierarchical modelling. Plos One. 2015;10(6):e0129260.
  • Larive CK, Barding GA Jr., Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Anal Chem. 2015;87(1):133–146.
  • Dunn WB, Broadhurst DI, Atherton HJ, et al. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011;40(1):387–426.
  • Denes J, Szabo E, Robinette SL, et al. Metabonomics of newborn screening dried blood spot samples: a novel approach in the screening and diagnostics of inborn errors of metabolism. Anal Chem. 2012;84(22):10113–10120.
  • Manwaring V, Boutin M, Auray-Blais C. A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal Chem. 2013;85(19):9039–9048.
  • Emwas A-H, Salek R, Griffin J, et al. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics. 2013;9(5):1048–1072.
  • Gowda GAN, Raftery D. Can NMR solve some significant challenges in metabolomics? J Magn Reson (San Diego, Calif.: 1997). 2015;260:144–160.
  • Paglia G, Angel P, Williams JP, et al. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem. 2015;87(2):1137–1144.
  • Hauschild AC, Frisch T, Baumbach JI, et al. Carotta: revealing hidden confounder markers in metabolic breath profiles. Metabolites. 2015;5(2):344–363.
  • Kliman M, May JC, McLean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids. 2011;1811(11):935–945.
  • Tebani A, Schmitz-Afonso I, Rutledge DN, et al. Optimization of a liquid chromatography ion mobility-mass spectrometry method for untargeted metabolomics using experimental design and multivariate data analysis. Anal Chim Acta. 2016;913:55–62.
  • May JC, Goodwin CR, McLean JA. Ion mobility-mass spectrometry strategies for untargeted systems, synthetic, and chemical biology. Curr Opin Biotechnol. 2015;31:117–121.
  • Twohig M, Shockcor JP, Wilson ID, et al. Use of an atmospheric solids analysis probe (ASAP) for high throughput screening of biological fluids: preliminary applications on urine and bile. J Proteome Res. 2010;9(7):3590–3597.
  • Eberlin LS, Norton I, Orringer D, et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci U S A. 2013;110(5):1611–1616.
  • Balog J, Sasi-Szabo L, Kinross J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med. 2013;5(194):11.
  • Alonso A, Marsal S, Julia A. Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol. 2015;3:23.
  • Brereton RG. A short history of chemometrics: a personal view. J Chemom. 2014;28(10):749–760.
  • Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24(6):417–441.
  • Rutledge DN, Bouveresse DJ-R. Independent components analysis with the JADE algorithm. Trac Trends Anal Chem. 2013;50:22–32.
  • Hartigan JA, Wong MA, Algorithm AS. 136: a K-means clustering algorithm. J Royal Stat Society. Ser C (Applied Statistics). 1979;28(1):100–108.
  • Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967;32(3):241–254.
  • Kohonen T. The self-organizing map. Proc IEEE. 1990;78(9):1464–1480.
  • Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell Lab Syst. 2001;58(2):109–130.
  • Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemom. 2002;16(3):119–128.
  • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–297.
  • Offroy M, Duponchel L. Topological data analysis: a promising big data exploration tool in biology, analytical chemistry and physical chemistry. Anal Chim Acta. 2016;910:1–11.
  • Nielson JL, Paquette J, Liu AW, et al. Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat Commun. 2015;6:8581.
  • Liu W, Bai X, Liu Y, et al. Topologically inferring pathway activity toward precise cancer classification via integrating genomic and metabolomic data: prostate cancer as a case. Sci Rep. 2015;5:13192.
  • Garcia-Campos MA, Espinal-Enriquez J, Hernandez-Lemus E. Pathway analysis: state of the art. Front Physiol. 2015;6:383.
  • Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. Plos Comput Biol. 2012;8(2):e1002375.
  • Swainston N, Smallbone K, Hefzi H, et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics. 2016;12:109.
  • Steuer R. Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform. 2006;7(2):151–158.
  • Krumsiek J, Suhre K, Illig T, et al. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol. 2011;5:21.
  • Valcarcel B, Wurtz P, Seich Al Basatena NK, et al. A differential network approach to exploring differences between biological states: an application to prediabetes. Plos One. 2011;6(9):e24702.
  • Bartel J, Krumsiek J, Schramm K, et al. The human blood metabolome-transcriptome interface. Plos Genet. 2015;11(6):e1005274.
  • Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–550.
  • Therrell BL, Padilla CD, Loeber JG, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171–187.
  • Auray-Blais C, Maranda B, Lavoie P. High-throughput tandem mass spectrometry multiplex analysis for newborn urinary screening of creatine synthesis and transport disorders. Clin Chim Acta. 2014;436:249–255.
  • Pitt JJ. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochemist. Rev /Australian Assoc Clin Biochemists. 2009;30(1):19–34.
  • Pitt JJ. Newborn screening. Clin Biochemist. Rev /Australian Assoc Clin Biochemists. 2010;31(2):57–68.
  • Pitt JJ, Eggington M, Kahler SG. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem. 2002;48(11):1970–1980.
  • Spacil Z, Tatipaka H, Barcenas M, et al. High-throughput assay of 9 lysosomal enzymes for newborn screening. Clin Chem. 2013;59(3):502–511.
  • Aygen S, Durr U, Hegele P, et al. NMR-based screening for inborn errors of metabolism: initial results from a study on Turkish neonates. JIMD Rep. 2014;16:101–111.
  • Miller MJ, Kennedy AD, Eckhart AD, et al. Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. J Inherit Metab Dis. 2015;38(6):1029–1039.
  • Auray-Blais C, Boutin M. Novel gb(3) isoforms detected in urine of Fabry disease patients: a metabolomic study. Curr Med Chem. 2012;19(19):3241–3252.
  • Auray-Blais C, Boutin M, Gagnon R, et al. Urinary globotriaosylsphingosine-related biomarkers for Fabry disease targeted by metabolomics. Anal Chem. 2012;84(6):2745–2753.
  • Shlomi T, Cabili MN, Ruppin E. Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol. 2009;5:263.
  • Piras D, Locci E, Palmas F, et al. Rare disease: a focus on metabolomics. Expert Opinion Orphan Drugs. 2016;4(12):1229–1237.
  • Barker DJ. Fetal origins of coronary heart disease. BMJ (Clinical Research Ed.). 1995;311(6998):171–174.
  • Barker DJ. The fetal and infant origins of adult disease. BMJ: Br Med J. 1990;301(6761):1111.
  • Fanos V, Buonocore G, Mussap M. Neonatomics and childomics: the right route to the future. J Matern Fetal Neonatal Med. 2014;27(Suppl 2):1–3.
  • Trump S, Laudi S, Unruh N, et al. 1H-NMR metabolic profiling of human neonatal urine. Magma. 2006;19(6):305–312.
  • Chiu C-Y, Yeh K-W, Lin G, et al. Metabolomics reveals dynamic metabolic changes associated with age in early childhood. Plos One. 2016;11(2):e0149823.
  • Moltu SJ, Sachse D, Blakstad EW, et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients. 2014;6(5):1913–1930.
  • Dessi A, Atzori L, Noto A, et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J Matern Fetal Neonatal Med. 2011;24(Suppl 2):35–39.
  • Maitre L, Villanueva CM, Lewis MR, et al. Maternal urinary metabolic signatures of fetal growth and associated clinical and environmental factors in the INMA study. BMC Med. 2016;14:177.
  • Diaz SO, Pinto J, Barros AS, et al. Newborn urinary metabolic signatures of prematurity and other disorders: a case control study. J Proteome Res. 2016;15(1):311–325.
  • Jelliffe-Pawlowski LL, Norton ME, Baer RJ, et al. Gestational dating by metabolic profile at birth: a California cohort study. Am J Obstet Gynecol. 2016;214(4):511.e511-513.
  • Mussap M, Ferrari M, Fanos V. Laboratory medicine meets precision medicine: the paradigm of metabolomics in perinatology. Proposals from the 4th International Conference on Neonatal and Pediatric Laboratory Medicine. Clinica Chimica Acta. 2015;451:1–3.
  • Fanos V, Van den Anker J, Noto A, et al. Metabolomics in neonatology: fact or fiction? Semin Fetal Neonatal Med. 2013;18(1):3–12.
  • Fanos V, Atzori L, Makarenko K, et al. Metabolomics application in maternal-fetal medicine. Biomed Res Int. 2013;720514:2013.
  • Noto A, Fanos V, Dessì A. In: Gregory S. Makowski, Editor(s), Advances in Clinical Chemistry, Elsevier, 2016;74:35–61.
  • Fanos V, Antonucci R, Barberini L, et al. Urinary metabolomics in newborns and infants. Adv Clin Chem. 2012;58:193–223.
  • Fanos V, Antonucci R, Atzori L. Metabolomics in the developing infant. Curr Opin Pediatr. 2013;25(5):604–611.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
  • Wishart DS. Is cancer a genetic disease or a metabolic disease? EBioMedicine. 2015;2(6):478–479.
  • DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200.
  • Nakazawa MS, Keith B, Simon MC. Oxygen availability and metabolic adaptations. Nat Rev Cancer. 2016;16(10):663–673.
  • Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(12):773-773.
  • Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–749.
  • Challapalli A, Barwick T, Tomasi G, et al. Exploring the potential of [11C]choline-PET/CT as a novel imaging biomarker for predicting early treatment response in prostate cancer. Nucl Med Commun. 2014;35(1):20–29.
  • Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism with cancer. J Clin Invest. 2013;123(9):3652–3658.
  • Kinnaird A, Zhao S, Wellen KE, et al. Metabolic control of epigenetics in cancer. Nat Rev Cancer. 2016;16(11):694–707.
  • Losman JA, Looper RE, Koivunen P, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339(6127):1621–1625.
  • Terunuma A, Putluri N, Mishra P, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2013;124(1):398–412.
  • Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507–522.
  • Goveia J, Pircher A, Conradi LC, et al. Meta-analysis of clinical metabolic profiling studies in cancer: challenges and opportunities. EMBO Mol Med. 2016;8(10):1134–1142.
  • Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351–359.
  • Olivares O, Däbritz JHM, King A, et al. Research into cancer metabolomics: towards a clinical metamorphosis. Semin Cell Dev Biol. 2015;43:52–64.
  • Hipp SJ, Steffen-Smith EA, Patronas N, et al. Molecular imaging of pediatric brain tumors: comparison of tumor metabolism using (18)F-FDG-PET and MRSI. J Neurooncol. 2012;109(3):521–527.
  • Zhan H, Ciano K, Dong K, et al. Targeting glutamine metabolism in myeloproliferative neoplasms. Blood Cells Mol Dis. 2015;55(3):241–247.
  • Emir UE, Larkin SJ, de Pennington N, et al. Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res. 2016;76(1):43–49.
  • Verma A, Kumar I, Verma N, et al. Magnetic resonance spectroscopy – revisiting the biochemical and molecular milieu of brain tumors. BBA Clin. 2016;5:170–178.
  • Tu Z, Mach R. C-11 radiochemistry in cancer imaging applications. Curr Top Med Chem. 2010;10(11):1060–1095.
  • Ifa DR, Eberlin LS. Ambient ionization mass spectrometry for cancer diagnosis and surgical margin evaluation. Clin Chem. 2016;62(1):111–123.
  • Spengler B. Mass spectrometry imaging of biomolecular information. Anal Chem. 2015;87(1):64–82.
  • van den Tweel JG, Taylor CR. A brief history of pathology. Virchows Archiv. 2010;457(1):3–10.
  • Hsu CC, Dorrestein PC. Visualizing life with ambient mass spectrometry. Curr Opin Biotechnol. 2015;31:24–34.
  • Ellis SR, Bruinen AL, Heeren RM. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem. 2014;406(5):1275–1289.
  • Wu C, Dill AL, Eberlin LS, et al. Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev. 2013;32(3):218–243.
  • He J, Luo Z, Huang L, et al. Ambient mass spectrometry imaging metabolomics method provides novel insights into the action mechanism of drug candidates. Anal Chem. 2015;87(10):5372–5379.
  • Takats Z, Wiseman JM, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–473.
  • Balog J, Szaniszlo T, Schaefer K-C, et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem. 2010;82(17):7343–7350.
  • Balog J, Kumar S, Alexander J, et al. In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew Chem Int Ed Engl. 2015;54(38):11059–11062.
  • Dhurandhar NV, Schoeller D, Brown AW, et al. Energy balance measurement: when something is not better than nothing. Int J Obes. 2015;39(7):1109–1113.
  • Labonté M-È, Kirkpatrick SI, Bell RC, et al. Dietary assessment is a critical element of health research–perspective from the partnership for advancing nutritional and dietary assessment in Canada. Appl Physiol Nutr Metab. 2016;41(10):1096–1099. ja.
  • O’Sullivan A, Gibney MJ, Brennan L. Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr. 2011;93(2):314–321.
  • Barton S, Navarro SL, Buas MF, et al. Targeted plasma metabolome response to variations in dietary glycemic load in a randomized, controlled, crossover feeding trial in healthy adults. Food Funct. 2015;6(9):2949–2956.
  • Kim K, Mall C, Taylor SL, et al. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. Plos ONE. 2014;9(1):e86223.
  • Holmes E, Loo RL, Stamler J, et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008;453(7193):396–400.
  • Dessi A, Cesare Marincola F, Masili A, et al. Clinical metabolomics and nutrition: the new frontier in neonatology and pediatrics. Biomed Res Int. 2014;2014:1–8.
  • Bictash M, Ebbels TM, Chan Q, et al. Opening up the “Black Box”: metabolic phenotyping and metabolome-wide association studies in epidemiology. J Clin Epidemiol. 2010;63(9):970–979.
  • Erazo MA, García A, Rupérez FJ, et al. Metabolomics of diet-related diseases. Foodomics: Principles and Applications, in Foodomics: Advanced Mass Spectrometry in Modern Food Science and Nutrition (ed A. Cifuentes), John Wiley & Sons, Inc., Hoboken, NJ, USA; 2013. p. 429–451.
  • Barron R, Bermingham K, Brennan L, et al. Twin metabolomics: the key to unlocking complex phenotypes in nutrition research. Nutr Res. 2016;36(4):291–304.
  • Scalbert A, Brennan L, Manach C, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99(6):1286–1308.
  • Beger RD, Dunn W, Schmidt MA, et al. Metabolomics enables precision medicine: “a White Paper, Community Perspective”. Metabolomics. 2016;12(9):1–15.
  • Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–1089.
  • Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93.
  • Clayton TA, Baker D, Lindon JC, et al. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci. 2009;106(34):14728–14733.
  • Jansson J, Willing B, Lucio M, et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. Plos One. 2009;4(7):e6386.
  • Mente A, Chalcraft K, Ak H, et al. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol. 2015;31(9):1189–1194.
  • Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–276.
  • Chumpitazi BP, Hollister EB, Cope JL, et al. 164 gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with irritable bowel syndrome. Gastroenterology. ‎2015;148(4):S–44.
  • Marcobal A, Kashyap PC, Nelson TA, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. Isme J. 2013;7(10):1933–1943.
  • Rath CM, Alexandrov T, Higginbottom SK, et al. Molecular analysis of model gut microbiotas by imaging mass spectrometry and nanodesorption electrospray ionization reveals dietary metabolite transformations. Anal Chem. 2012;84(21):9259–9267.
  • Bouslimani A, Porto C, Rath CM, et al. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A. 2015;112(17):E2120–2129.
  • Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Translational Res. 2016;179:204–222.
  • Gamazon ER, Skol AD, Perera MA. The limits of genome-wide methods for pharmacogenomic testing. Pharmacogenet Genomics. 2012;22(4):261–272.
  • Schork NJ. Personalized medicine: time for one-person trials. Nature. 2015;520(7549):609–611.
  • St. Sauver JL, Bielinski SJ, Olson JE, et al. Integrating pharmacogenomics into clinical practice: promise vs reality. Am J Med. 2016;129(10):1093–1099.e1091.
  • Shah RR, Smith RL. Addressing phenoconversion: the Achilles’ heel of personalized medicine. Br J Clin Pharmacol. 2015;79(2):222–240.
  • Kaddurah-Daouk R, Weinshilboum RM. Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther. 2014;95(2):154–167.
  • Everett JR. From metabonomics to pharmacometabonomics: the role of metabolic profiling in personalized medicine. Front Pharmacol. 2016;7:297.
  • Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006;440(7087):1073–1077.
  • Dai D, Tian Y, Guo H, et al. A pharmacometabonomic approach using predose serum metabolite profiles reveals differences in lipid metabolism in survival and non-survival rats treated with lipopolysaccharide. Metabolomics. 2015;12(1):1–13.
  • Kwon HN, Kim M, Wen H, et al. Predicting idiopathic toxicity of cisplatin by a pharmacometabonomic approach. Kidney Int. 2011;79(5):529–537.
  • Burt T, Nandal S. Pharmacometabolomics in early-phase clinical development. Clin Transl Sci. 2016;9(3):128–138.
  • Phapale P, Kim SD, Lee H, et al. An integrative approach for identifying a metabolic phenotype predictive of individualized pharmacokinetics of tacrolimus. Clin Pharmacol Ther. 2010;87(4):426–436.
  • Huang Q, Aa J, Jia H, et al. A pharmacometabonomic approach to predicting metabolic phenotypes and pharmacokinetic parameters of atorvastatin in healthy volunteers. J Proteome Res. 2015;14(9):3970–3981.
  • Muhrez K, Benz-De Bretagne I, Nadal-Desbarats L, et al. Endogenous metabolites that are substrates of organic anion transporter’s (OATs) predict ethotrexate clearance. Pharmacol Res. 2016. 19. pii: S1043-6618(16)30469-8.
  • Varshavi D, Varshavi D, Everett JR. The role of pharmacometabonomics in predicting drug pharmacokinetics. Int J Pharmacokinet. 2016;1(1):5–8.
  • Kaddurah-Daouk R, McEvoy J, Baillie R, et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry. 2007;12(10):934–945.
  • Miolo G, Muraro E, Caruso D, et al. Phamacometabolomics study identifies circulating spermidine and tryptophan as potential biomarkers associated with the complete pathological response to rastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer. Oncotarget. 2016;7(26):39809-39822.
  • Abo R, Hebbring S, Ji Y, et al. Merging pharmacometabolomics with pharmacogenomics using ‘1000 Genomes’ single-nucleotide polymorphism imputation: selective serotonin reuptake inhibitor response pharmacogenomics. Pharmacogenet Genomics. 2012;22(4):247–253.
  • Ji Y, Hebbring S, Zhu H, et al. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics‐informed pharmacogenomics. Clin Pharmacol Ther. 2011;89(1):97–104.
  • Shahin MH, Gong Y, McDonough CW, et al. a genetic response score for hydrochlorothiazide use: insights from genomics and metabolomics integration. Hypertension (Dallas, Tex.: 1979). 2016;68(3):621–629.
  • Yerges-Armstrong LM, Ellero-Simatos S, Georgiades A, et al. Purine pathway implicated in mechanism of resistance to aspirin therapy: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther. 2013;94(4):525–532.
  • Neavin D, Kaddurah-Daouk R, Weinshilboum R. Pharmacometabolomics informs pharmacogenomics. Metabolomics. 2016;12(7):1–6.
  • Suhre K, Raffler J, Kastenmüller G. Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys. 2016;589:168–176.
  • Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60.
  • Suhre K, Wallaschofski H, Raffler J, et al. A genome-wide association study of metabolic traits in human urine. Nat Genet. 2011;43(6):565–569.
  • Rhee EP, Ho JE, Chen M-H, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18(1):130–143.
  • Rhee EP, Yang Q, Yu B, et al. An exome array study of the plasma metabolome. Nat Commun. 2016;7:12360.
  • Kettunen J, Tukiainen T, Sarin A-P, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012;44(3):269–276.
  • Petersen AK, Zeilinger S, Kastenmuller G, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23(2):534–545.
  • Kastenmuller G, Raffler J, Gieger C, et al. Genetics of human metabolism: an update. Hum Mol Genet. 2015;24(R1):R93–r101.
  • May JC, McLean JA. Advanced multidimensional separations in mass spectrometry: navigating the big data deluge. Annu Rev Anal Chem. 2016;9(1):387–409.
  • Ioannidis JP, Khoury MJ. Improving validation practices in “omics” research. Science. 2011;334(6060):1230–1232.
  • Kolker E, Ozdemir V, Martens L, et al. Toward more transparent and reproducible omics studies through a common metadata checklist and data publications. Omics. 2014;18(1):10–14.
  • Tenenbaum JD, Sansone SA, Haendel M. A sea of standards for omics data: sink or swim? J Am Med Inform Association: JAMIA. 2014;21(2):200–203.
  • Chitayat S, Rudan JF. Chapter 10 – phenome centers and global harmonization. In: Metabolic phenotyping in personalized and public healthcare. (ed. J. Nicholson, A. Darzi and E. Holmes).  Boston: Academic Press; 2016; p. 291–315.
  • Rocca-Serra P, Salek RM, Arita M, et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics. 2016;12(1):14.
  • Dunn WB, Wilson ID, Nicholls AW, et al. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4(18):2249–2264.
  • Walzer M, Pernas LE, Nasso S, et al. QcML: an exchange format for quality control metrics from mass spectrometry experiments. Mol Cell Proteomics. 2014;13(8):1905–1913.
  • Issaq HJ, Waybright TJ, Veenstra TD. Cancer biomarker discovery: opportunities and pitfalls in analytical methods. Electrophoresis. 2011;32(9):967–975.
  • Jonsson P, Wuolikainen A, Thysell E, et al. Constrained randomization and multivariate effect projections improve information extraction and biomarker pattern discovery in metabolomics studies involving dependent samples. Metabolomics: Official J Metabolomic Soc. 2015;11(6):1667–1678.
  • Gullapalli RR, Desai KV, Santana-Santos L, et al. Next generation sequencing in clinical medicine: challenges and lessons for pathology and biomedical informatics. J Pathol Inform. 2012;3(1):40.
  • Lathrop JT, Jeffery DA, Shea YR, et al. US Food and Drug Administration perspectives on clinical mass spectrometry. Clin Chem. 2016;62(1):41–47.
  • Levin N, Salek RM, Steinbeck C. Chapter 11 – from databases to big data. In: Metabolic phenotyping in personalized and public healthcare. (ed. J. Nicholson, A. Darzi and E. Holmes). Boston: Academic Press; 2016. p. 317–331.
  • Huang BE, Mulyasasmita W, Rajagopal G. The path from big data to precision medicine. Expert Rev Precision Med Drug Dev. 2016;1(2):129–143.
  • Chouinard CD, Wei MS, Beekman CR, et al. Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem. 2016;62(1):124–133.
  • Schneider T, Hauschild AC, Baumbach JI, et al. An integrative clinical database and diagnostics platform for biomarker identification and analysis in ion mobility spectra of human exhaled air. J Integr Bioinform. 2013;10(2):218.
  • Ferreira CR, Yannell KE, Jarmusch AK, et al. Ambient ionization mass spectrometry for point-of-care diagnostics and other clinical measurements. Clin Chem. 2016;62(1):99–110.
  • Barkal LJ, Theberge AB, Guo C-J, et al. Microbial metabolomics in open microscale platforms. Nat Commun. 2016;7:10610.
  • Argmann CA, Houten SM, Zhu J, et al. A next generation multiscale view of inborn errors of metabolism. Cell Metab. 2016;23(1):13–26.
  • Wettersten HI, Hakimi AA, Morin D, et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 2015;75(12):2541–2552.
  • van Karnebeek CD, Bonafe L, Wen XY, et al. NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet. 2016;48(7):777–784.
  • Louis DN, Gerber GK, Baron JM, et al. Computational pathology: an emerging definition. Arch Pathol Lab Med. 2014;138(9):1133–1138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.