Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 5, 2020 - Issue 3
223
Views
15
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics of drugs used to treat brain disorders

Pages 181-234 | Received 21 Nov 2019, Accepted 02 Mar 2020, Published online: 17 Mar 2020

References

  • Patel V, Chisholm D, Dua T, et al. Disease control priorities related to mental, neurological, and substance use disorders. 3rd ed. Vol. 4. Washington: World Bank Group; 2015.
  • Murray CJ, Lopez AD, editors. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Geneva: Harvard University Press. 1996
  • Whiteford HA, Degenhardt L, Rehm J, et al. Global burden of mental and substance use disorders: findings from the global burden of disease study 2010. Lancet. 2013;382(9904):1575–1586. DOI:10.1016/S0140-6736(13)61611-6.
  • Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1, 160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2163–2196. DOI:10.1016/S0140-6736(12)61729-2.
  • Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for global burden of disease study 2013. Lancet. 2015;386(9995):743–800.
  • Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry. 2015;72(4):334–341.
  • Andlin-Sobocki P, Jönsson B, Wittchen HU, et al. Costs of disorders of the brain in Europe. Eur J Neurol. 2005;12(1):1–27. DOI:10.1111/j.1468-1331.2005.01202.x.
  • Cacabelos R, editor. World Guide for Drug Use and Pharmacogenomics. ACorunna (Spain). EuroEspes Publishing; 2012.
  • EuroPharmaGenics (EPG) [Internet]. Corunna: EuroEspes Publishing; 2012. [cited 2019 Dec]. Available from: http://europharmagenics.com/
  • Cacabelos R, Tellado I, Cacabelos P. The epigenetic machinery in the life cycle and pharmacoepigenetics. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford: Academic Press/Elsevier. 2019. p. 1–100.
  • Cacabelos R, Carril JC, Sanmartín A, et al. Pharmacoepigenetic processors: epigenetic drugs, drug resistance, toxicoepigenetics, and nutriepigenetics. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford: Academic Press/Elsevier; 2019. p. 191–424.
  • Cacabelos R, Carril JC, Cacabelos P, et al. Pharmacogenomics of Alzheimer’s disease: genetic determinants of phenotypic variation and therapeutic outcome. J Genomic Med Pharmacogenomics. 2016;1(2):151–209.
  • Cacabelos R. Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer’s disease and related risk factors. Future Neurol. 2018;13(2):71–86.
  • Cacabelos R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res. 2014;75(6):348–365.
  • Fujikura K, Ingelman-Sundberg M, Lauschke VM. Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet Genomics. 2015;25(12):584–594. DOI:10.1097/FPC.0000000000000172.
  • Bernard S, Neville KA, Nguyen AT, et al. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist. 2006;11(2):126–135. DOI:10.1634/theoncologist.11-2-126.
  • Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol. 2019;12(5):407–442. DOI:10.1080/17512433.2019.1597706.
  • Laura A, Pratt LA, Brody DJ, et al. Antidepressant use in persons aged 12 and over: united States, 2005–2008. NCHS Data Brief. 2011;76:1–8.
  • Lewer D, O’Reilly C, Mojtabai R, et al. Antidepressant use in 27 European countries: associations with sociodemographic, cultural and economic factors. Br J Psychiatry. 2015;207(3):221–226. DOI:10.1192/bjp.bp.114.156786.
  • Lynch TR, Whalley B, Hempel RJ, et al. Refractory depression: mechanisms and evaluation of radically open dialectical behaviour therapy (RO-DBT) [REFRAMED]: protocol for randomised trial. BMJ Open. 2015;5(7):e008857.
  • Hu TW. Perspectives: an international review of the national cost estimates of mental illness, 1990-2003. J Ment Health Policy Econ. 2006;9(1):3–13.
  • Kessler RC, Heeringa S, Lakoma MD, et al. Individual and societal effects of mental disorders on earnings in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry. 2008;165(6):703–711. DOI:10.1176/appi.ajp.2008.08010126.
  • Levinsohn PM, Klein DN, Seeley JR. Bipolar disorders in a community sample of older adolescents: prevalence, phenomenology, comorbidity, and course. J Am Acad Child Adolesc Psychiatry. 1995;34(4):454–463.
  • Coleman JRI, Gaspar HA, Bryois J, et al. The genetics of the mood disorder spectrum: genome-wide association analyses of more than 185, 000 cases and 439, 000 controls. Biol Psychiatry. 2019. S0006-3223(19)31813-X. DOI:10.1016/j.biopsych.2019.10.015.
  • Perugi G, De Rossi P, Fagiolini A, et al. Personalized and precision medicine as informants for treatment management of bipolar disorder. Int Clin Psychopharmacol. 2019;34(4):189–205.
  • Calabrò M, Porcelli S, Crisafulli C, et al. Genetic variants associated with psychotic symptoms across psychiatric disorders. Neurosci Lett. 2020;720:134754.
  • Cacabelos R, Cacabelos P, Aliev G. Genomics and pharmacogenomics of antipsychotic drugs. Open J Psychiatry. 2013;3(1):46–139.
  • Cacabelos R, Torrellas C. Pharmacogenomics of antidepressants. HSOA J Psychiatry Depression Anxiety. 2015;1:001.
  • Cacabelos R. The path to personalized medicine in mental disorders. In: Ritsner MS, editor. The handbook of neuropsychiatric biomarkers, endophenotypes and genes. Vol. 4. Netherlands: Springer; 2011. p. 3–63.
  • Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry. 2020;25(3):544–559. DOI:10.1038/s41380-019-0634-7.
  • Bixler EO, Kales A, Soldatos CR, et al. Prevalence of sleep disorders in the Los Angeles metropolitan area. Am J Psychiatry. 1979;136(10):1257–1262.
  • Ohayon MM. Epidemiological overview of sleep disorders in the general population. Sleep Med Res. 2011;2(1):1–9.
  • Patterson SM, Hughes CM, Crealey G, et al. An evaluation of an adapted U.S. model of pharmaceutical care to improve psychoactive prescribing for nursing home residents in Northern Ireland (Fleetwood Northern Ireland study). J Am Geriatr Soc. 2010;58(1):44–53. DOI:10.1111/j.1532-5415.2009.02617.x.
  • Barber ND, Alldred DP, Raynor DK, et al. Care homes’ use of medicines study: prevalence, causes and potential harm of medication errors in care homes for older people. Qual Saf Health Care. 2009;18(5):341–346. DOI:10.1136/qshc.2009.034231.
  • Hughes CM, Lapane KL. Pharmacy interventions on prescribing in nursing homes: from evidence to practice. Ther Adv Drug Saf. 2011;2(3):103–112.
  • Cacabelos R, Torrellas C, Tellado I, et al. Genomics, therapeutics and Pharmacogenomics of attention-deficit/hyperactivity disorder. In: López-Muñoz F, Álamo C, editors. Attention deficit hyperactivity disorder (ADHD). New York: Nova Science Publishers; 2015. p. 65–256.
  • Cacabelos R, Torrellas C, Tellado I, et al. Genomics, pathogenesis, treatment and Pharmacogenomics of attention-deficit/hyperactivity disorder. Gen-T Int. 2016;4:8–134.
  • Cacabelos R. Epigenetics and pharmacoepigenetics of neurodevelopmental and neuropsychiatric disorders. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford: Academic Press/Elsevier; 2019. p. 609–709.
  • Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.
  • Hu Z, Ying X, Huang L, et al. Association of human serotonin receptor 4 promoter methylation with autism spectrum disorder. Medicine (Baltimore). 2020;99(4):e18838.
  • Beck DB, Petracovici A, He C, et al. Delineation of a human mendelian disorder of the DNA demethylation machinery: TET3 deficiency. Am J Hum Genet. 2020;106(2):234–245. S0002-9297(19)30471-9. DOI:10.1016/j.ajhg.2019.12.007.
  • Vorstman JAS, Parr JR, Moreno-De-Luca D, et al. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet. 2017;18(6):362–376. DOI:10.1038/nrg.2017.4.
  • Sokolova E, Oerlemans AM, Rommelse NN, et al. A causal and mediation analysis of the comorbidity between attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). J Autism Dev Disord. 2017;47(6):1595–1604.
  • Xu M, Xing Q, Li S, et al. Pharacogenetic effects of dopamine transporter gene polymorphisms on response to chlorpromazine and clozapine and on extrapyramidal syndrome in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):1026–1032.
  • Mas S, Gassó P, Lafuente A, et al. Pharmacogenetic study of antipsychotic induced acute extrapyramidal symptoms in a first episode psychosis cohort: role of dopamine, serotonin and glutamate candidate genes. Pharmacogenomics J. 2016;16(5):439–445.
  • Zivković M, Mihaljević-Peles A, Bozina N, et al. The association study of polymorphisms in DAT, DRD2, and COMT genes and acute extrapyramidal adverse effects in male schizophrenic patients treated with haloperidol. J Clin Psychopharmacol. 2013;33(5):593–599.
  • Turčin A, Dolžan V, Porcelli S, et al. Adenosine hypothesis of antipsychotic drugs revisited: pharmacogenomics variation in nonacute schizophrenia. OMICS. 2016;20(5):283–289.
  • Gareeva AE, Zakirov DF, Valinurov RG, et al. Polymorphism of RGS2 gene: genetic markers of risk for schizophrenia and pharmacogenetic markers of typical neuroleptics efficiency. Mol Biol. 2013;47(6):934–941. DOI:10.1134/S0026893313060046.
  • Mas S, Gassó P, Ritter MA, et al. Pharmacogenetic predictor of extrapyramidal symptoms induced by antipsychotics: multilocus interaction in the mTOR pathway. Eur Neuropsychopharmacol. 2015;25(1):51–59.
  • Lanning RK, Zai CC, Müller DJ. Pharmacogenetics of tardive dyskinesia: an updated review of the literature. Pharmacogenomics. 2016;17(12):1339–1351.
  • Koola MM, Tsapakis EM, Wright P, et al. Association of tardive dyskinesia with variation in CYP2D6: is there a role for active metabolites? J Psychopharmacol. 2014;28(7):665–670.
  • Lee HJ, Kang SG. Genetics of tardive dyskinesia. Int Rev Neurobiol. 2011;98:231–264.
  • Tanaka S, Syu A, Ishiguro H, et al. DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia. Pharmacogenomics J. 2013;13(1):27–34.
  • Greenbaum L, Alkelai A, Zozulinsky P, et al. Support for association of HSPG2 with tardive dyskinesia in Caucasian populations. Pharmacogenomics J. 2012;12(6):513–520.
  • Tiwari AK, Zai CC, Likhodi O, et al. Association study of cannabinoid receptor 1 (CNR1) gene in tardive dyskinesia. Pharmacogenomics J. 2012;12(3):260–266.
  • Zai CC, Tiwari AK, Mazzoco M, et al. Association study of the vesicular monoamine transporter gene SLC18A2 with tardive dyskinesia. J Psychiatr Res. 2013;47(11):1760–1765.
  • Zai CC, Maes MS, Tiwari AK, et al. Genetics of tardive dyskinesia: promising leads and ways forward. J Neurol Sci. 2018a;389:28–34.
  • Zai CC, Tiwari AK, Zai GC, et al. New findings in pharmacogenetics of schizophrenia. Curr Opin Psychiatry. 2018;31(3):200–212.
  • Lu JY, Tiwari AK, Zai GC, et al. Association study of disrupted-in-schizophrenia-1 gene variants and tardive dyskinesia. Neurosci Lett. 2018;686:17–22.
  • Hongkaew Y, Medhasi S, Pasomsub E, et al. UGT1A1 polymorphisms associated with prolactin response in risperidone-treated children and adolescents with autism spectrum disorder. Pharmacogenomics J. 2018;18(6):740–748.
  • Nuntamool N, Ngamsamut N, Vanwong N, et al. Pharmacogenomics and efficacy of risperidone long-term treatment in Thai autistic children and adolescents. Basic Clin Pharmacol Toxicol. 2017;121(4):316–324.
  • Ngamsamut N, Hongkaew Y, Vanwong N, et al. 9-Hydroxyrisperidone-induced hyperprolactinaemia in Thai children and adolescents with autism spectrum disorder. Basic Clin Pharmacol Toxicol. 2016;119(3):267–272.
  • Sukasem C, Hongkaew Y, Ngamsamut N, et al. Impact of pharmacogenetic markers of CYP2D6 and DRD2 on prolactin response in risperidone-treated Thai children and adolescents with autism spectrum disorders. J Clin Psychopharmacol. 2016;36(2):141–146.
  • Puangpetch A, Srisawasdi P, Unaharassamee W, et al. Association between polymorphisms of LEP, LEPR, DRD2, HTR2A and HTR2C genes and risperidone- or clozapine-induced hyperglycemia. Pharmgenomics Pers Med. 2019;12:155–166.
  • Sukasem C, Vanwong N, Srisawasdi P, et al. Pharmacogenetics of risperidone-induced insulin resistance in children and adolescents with autism spectrum disorder. Basic Clin Pharmacol Toxicol. 2018;123(1):42–50.
  • Puangpetch A, Unaharassamee W, Jiratjintana N, et al. Genetic polymorphisms of HTR2C, LEP and LEPR on metabolic syndromes in patients treated with atypical antipsychotic drugs. J Pharm Pharmacol. 2018;70(4):536–542.
  • Vanwong N, Srisawasdi P, Ngamsamut N, et al. Hyperuricemia in children and adolescents with autism spectrum disorder treated with risperidone: the risk factors for metabolic adverse effects. Front Pharmacol. 2017;7:527.
  • Manu P, Dima L, Shulman M, et al. Weight gain and obesity in schizophrenia: epidemiology, pathobiology, and management. Acta Psychiatr Scand. 2015;132(2):97–108.
  • Chan LF, Zai C, Monda M, et al. Role of ethnicity in antipsychotic-induced weight gain and tardive dyskinesia: genes or environment? Pharmacogenomics. 2013;14(11):1273–1281.
  • Xie C, Wang ZC, Liu XF, et al. Association between schizophrenia and single nucleotide polymorphisms in lipoprotein lipase gene in a Han Chinese population. Psychiatr Genet. 2011;21(6):307–314.
  • Kohlrausch FB, Severino-Gama C, Lobato MI, et al. The CYP1A2-163C>A polymorphism is associated with clozapine-induced generalized tonic-clonic seizures in Brazilian schizophrenia patients. Psychiatry Res. 2013;209(2):242–245.
  • Schuhmacher A, Becker T, Rujescu D, et al. Investigation of tryptophan hydroxylase 2 (TPH2) in schizophrenia and in the response to antipsychotics. J Psychiatr Res. 2012;46(8):1073–1080.
  • Landolt HP, Holst SC, Clinical VA. Experimental human sleep-wake pharmacogenetics. Handb Exp Pharmacol. 2019;253:207–241.
  • Sani G, Perugi G, Tondo L. Treatment of bipolar disorder in a lifetime perspective: is lithium still the best choice? Clin Drug Investig. 2017;37(8):713–727.
  • Walss-Bass C, Fries GR. Are lithium effects dependent on genetic/epigenetic architecture? Neuropsychopharmacology. 2019;44(1):228.
  • Manchia M, Pisanu C, Squassina A. Lithium pharmacogenetics. Psychiatry Res. 2019;279:401.
  • Gomez-Sanchez CI, Carballo JJ, Riveiro-Alvarez R, et al. Pharmacogenetics of methylphenidate in childhood attention-deficit/hyperactivity disorder: long-term effects. Sci Rep. 2017;7(1):10391.
  • Cacabelos R, Torrellas C, Cacabelos P, et al. Pharmacogenetics of neurodegenerative disorders. In: Grech, Grossman, editors. Preventive and predictive genetics: towards Personalized Medicine. London: Springer; 2015. p. 173–240.
  • Cacabelos R. Impact of genomic medicine on the future of neuropsychopharmacology. J Neuropsychopharmacol Mental Health. 2016;1:e101.
  • Cacabelos R, Carril JC, Cacabelos P, et al. Pharmacogenetics of neurodegenerative disorders. Internal Med Rev. 2017;3(5):1–40. DOI:10.18103/imr.v3i6.472.
  • Cacabelos R. Pharmacogenomics of Alzheimer’s and Parkinson’s diseases. Neurosci Lett. 2018; 133807. pii: S0304-3940(18)30624-4. DOI: 10.1016/j.neulet.2018.09.018.
  • Cacabelos R, Teijido O, Carril JC. Can cloud-based tools accelerate Alzheimer’s disease drug discovery? Expert Opin Drug Discov. 2016;11(3):215–223.
  • Cacabelos R. Have there been improvement in Alzheimer’s disease drug discovery over the past 5 years? Expert Opin Drug Discov. 2018;13(6):523–538.
  • Cacabelos R, Cacabelos P, Torrellas C, et al. Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol. 2014;1175:323–556.
  • Cacabelos R, Goldgaber D, Vostrov A, et al. APOE-TOMM40 in the pharmacogenomics of dementia. J Pharmacogenomics Pharmacoproteomics. 2014;5:135.
  • Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer’s disease. Future Neurol. 2015;10(3):229–252.
  • Cacabelos R, Torrellas C, Carrera I, et al. Novel therapeutic strategies for dementia. CNS Neurol Disord Drug Targets. 2016;15(2):141–241. DOI:10.2174/1871527315666160202121548.
  • Cacabelos R, Torrellas C, Tejido, et al. Pharmacogenetic considerations in the treatment of Alzheimer’s disease. Pharmacogenomics. 2016;17(9):1041–1074.
  • Cacabelos R. Population-level pharmacogenomics for precision drug development in dementia. Expert Rev Precis Med Drug Dev. 2018;3(3):163–188. DOI:10.1080/23808993.2018.1468218.
  • Cacabelos R, Cacabelos P, Carril JC. Epigenetics and pharmacoepigenetics of age-related neurodegenerative disorders. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford (UK): Academic Press/Elsevier; 2019. p. 903–950.
  • Cacabelos R. Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiat Dis Treat. 2007;3(3):303–333.
  • Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet. 2013;52(4):225–241. DOI:10.1007/s40262-013-0038-9.
  • Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009;73(10):761–767. DOI:10.1212/WNL.0b013e3181b6bbe3.
  • Xiao T, Jiao B, Zhang W, et al. Effect of the CYP2D6 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease: a systematic review and meta-analysis. CNS Drugs. 2016;30(10):899–907.
  • Albani D, Martinelli BF, Biella G, et al. Replication study to confirm the role of CYP2D6 polymorphism rs1080985 on donepezil efficacy in Alzheimer’s disease patients. J Alzheimers Dis. 2012;30(4):745–749. DOI:10.3233/JAD-2012-112123.
  • Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics. 2011;21(4):225–230. DOI:10.1097/FPC.0b013e32833f984c.
  • Zhong Y, Zheng X, Miao Y, et al. Effect of CYP2D6*10 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease. Am J Med Sci. 2013;345(3):222–226. DOI:10.1097/MAJ.0b013e318255a8f9.
  • Yaowaluk T, Senanarong V, Limwongse C, et al. Influence of CYP2D6, CYP3A5, ABCB1, APOE polymorphisms and nongenetic factors on donepezil treatment in patients with Alzheimer’s disease and vascular dementia. Pharmacogenomics Pers Med. 2019;12:209–224.
  • Magliulo L, Dahl ML, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol. 2011;67(1):47–54. DOI:10.1007/s00228-010-0883-5.
  • De Beaumont L, Pelleieux S, Lamarre-Théroux L, et al. Alzheimer’s disease cooperative study. Butyrylcholinesterase K and apolipoprotein E-ɛ4 reduce the age of onset of Alzheimer’s disease, accelerate cognitive decline, and modulate donepezil response in mild cognitively impaired subjects. J Alzheimers Dis. 2016;54(3):913–922. DOI:10.3233/JAD-160373.
  • Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002;41(10):719–739.
  • Lilienfeld S. Galantamine-a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev. 2006;8(2):159–176.
  • Farlow MR. Clinical pharmacokinetics of galantamine. Clin Pharmacokinet. 2003;42(15):1383–1392.
  • Zhao Q, Brett M, Van Osselaer N, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J Clin Pharmacol. 2002;42(9):1002–1010. DOI:10.1177/0091270002042009007.
  • Mannens GS, Snel CA, Hendrickx J, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab Dispos. 2002;30(5):553–563. DOI:10.1124/dmd.30.5.553.
  • Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit. 2013;35(2):270–275. DOI:10.1097/FTD.0b013e318282ff02.
  • Clarke JA, Cutler M, Gong I, et al. Cytochrome P450 2D6 phenotyping in an elderly population with dementia and response to galantamine in dementia: a pilot study. Am J Geriatr Pharmacother. 2011;9(4):224–233. DOI:10.1016/j.amjopharm.2011.07.003.
  • Bentué-Ferrer D, Tribut O, Polard E, et al. Clinically significant drug interactions with cholinesterase inhibitors: a guide for neurologists. CNS Drugs. 2003;17(13):947–963. DOI:10.2165/00023210-200317130-00002.
  • Huang F, Fu Y. A review of clinical pharmacokinetics and pharmacodynamics of galantamine, a reversible acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease, in healthy subjects and patients. Curr Clin Pharmacol. 2010;5(2):115–124.
  • Zhai XJ, Lu YN. Food-drug interactions: effect of capsaicin on the pharmacokinetics of galantamine in rats. Xenobiotica. 2012;42(11):1151–1155.
  • Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther. 1998;20(4):634–647.
  • Sonali N, Tripathi M, Sagar R, et al. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer’s patients. CNS Neurosci Ther. 2013;19(2):91–97. DOI:10.1111/cns.2013.19.issue-2.
  • Yoon H, Myung W, Lim SW, et al. Association of the choline acetyltransferase gene with responsiveness to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacopsychiatry. 2015;48(3):111–117.
  • Clarelli F, Mascia E, Santangelo R, et al. CHRNA7 Gene and response to cholinesterase Inhibitors in an Italian cohort of Alzheimer’s disease patients. J Alzheimers Dis. 2016;52(4):1203–1208.
  • Martinelli-Boneschi F, Giacalone G, Magnani G, et al. Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiol Aging. 2013;34(6):1711.e7-13.
  • Qiu WQ, Mwamburi M, Besser LM, et al. Angiotensin converting enzyme inhibitors and the reduced risk of Alzheimer’s disease in the absence of apolipoprotein E4 allele. J Alzheimers Dis. 2013;37(2):421–428.
  • Yang Z, Zhou X, Zhang Q. Effectiveness and safety of memantine treatment for Alzheimer’s disease. J Alzheimers Dis. 2013;36(3):445–458.
  • Micuda S, Mundlova L, Anzenbacherova E, et al. Inhibitory effects of memantine on human cytochrome P450 activities: prediction of in vivo drug interactions. Eur J Clin Pharmacol. 2004;60(8):583–589. DOI:10.1007/s00228-004-0825-1.
  • Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet. 2013;52(3):211–223. DOI:10.1007/s40262-013-0032-2.
  • von Campenhausen S, Bornschein B, Wick R, et al. Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol. 2005;15(4):473–490. DOI:10.1016/j.euroneuro.2005.04.007.
  • Zou YM, Liu J, Tian ZY, et al. Systematic review of the prevalence and incidence of Parkinson’s disease in the People’s Republic of China. Neuropsychiatr Dis Treat. 2015;15:1467–1472.
  • Hirsch L, Jette N, Frolkis A, et al. The incidence of Parkinson’s Disease: a systematic review and meta-analysis. Neuroepidemiology. 2016;46(4):292–300.
  • Pringsheim T, Jette N, Frolkis A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583–1590.
  • Riedel O, Bitters D, Amann U, et al. Estimating the prevalence of Parkinson’s disease (PD) and proportions of patients with associated dementia and depression among the older adults based on secondary claims data. Int J Geriatr Psychiatry. 2016;31(8):938–943. DOI:10.1002/gps.4414.
  • Agúndez JA, García-Martín E, Alonso-Navarro H, et al. Anti-Parkinson’s disease drugs and pharmacogenetic considerations. Expert Opin Drug Metab Toxicol. 2013;9(7):859–874.
  • Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18(3):551.
  • Titova N, Chaudhuri KR. Personalized medicine and nonmotor symptoms in Parkinson’s disease. Int Rev Neurobiol. 2017;134:1257–1281.
  • Dos Santos EUD, Sampaio TF. Tenório Dos Santos AD, et al. The influence of SLC6A3 and DRD2 polymorphisms on levodopa-therapy in patients with sporadic Parkinson’s disease. J Pharm Pharmacol. 2019;71(2):206–212.
  • Moreau C, Meguig S, Corvol JC, et al. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson’s disease. Brain. 2015;138(5):1271–1283.
  • Rieck M, Schumacher-Schuh AF, Altmann V, et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics. 2012;13(15):1701–1710.
  • Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, et al. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson’s disease patients? Pharmacogenomics. 2015;16(6):573–582.
  • Schumacher-Schuh AF, Altmann V, Rieck M, et al. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. Pharmacogenomics J. 2014;14(3):289–294.
  • Rieck M, Schumacher-Schuh AF, Altmann V, et al. Association between DRD2 and DRD3 gene polymorphisms and gastrointestinal symptoms induced by levodopa therapy in Parkinson’s disease. Pharmacogenomics J. 2018;18(1):196–200.
  • Masellis M, Collinson S, Freeman N, et al. Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson’s disease: a pharmacogenetic study. Brain. 2016;139(7):2050–2062.
  • Corvol JC, Bonnet C, Charbonnier-Beaupel F, et al. The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: a randomized crossover clinical trial. Ann Neurol. 2011;69(1):111–118.
  • Cacabelos R, Fernández-Novoa L, Alejo R, et al. E-PodoFavalin-15999 (Atremorine®)-induced dopamine response in Parkinson’s disease: pharmacogenetics-related effects. J Genomic Med Pharmacogenomics. 2016;1:1–26.
  • Cacabelos R, Carrera I, Alejo R, et al. Pharmacogenetics of Atremorine-induced neuroprotection and dopamine response in Parkinson’s disease. Planta Med. 2019. DOI:10-1055/a-1013-7686.
  • Lill CM, Luessi F, Alcina A, et al. Genome-wide significant association with seven novel multiple sclerosis risk loci. J Med Genet. 2015;52(12):848–855.
  • Sokolova EA, Malkova NA, Korobko DS, et al. Association of SNPs of CD40 gene with multiple sclerosis in Russians. PLoS One. 2013;8(4):e61032.
  • Grossman I, Knappertz V, Laifenfeld D, et al. Pharmacogenomics strategies to optimize treatments for multiple sclerosis: insights from clinical research. Prog Neurobiol. 2017;152:114–130.
  • Jafarzadeh A, Jamali M, Mahdavi R, et al. Circulating levels of interleukin-35 in patients with multiple sclerosis: evaluation of the influences of FOXP3 gene polymorphism and treatment program. J mol neurosc. 2015;55(4):891–897. DOI:10.1007/s12031-014-0443-z.
  • Mahdavi R, Jamali M, Rostami M, et al. FOXP3 polymorphism rs2232365 and its association with multiple sclerosis susceptibility. Tehran Univ Med J. 2016;74(6):425–432.
  • Luna G, Alping P, Burman J, et al. Infection risks among patients with multiple sclerosis treated with Fingolimod, Natalizumab, Rituximab, and injectable therapies. JAMA Neurol. 2019. DOI:10.1001/jamaneurol.2019.3365.
  • Mahurkar S, Moldovan M, Suppiah V, et al. Response to interferon-beta treatment in multiple sclerosis patients: a genome-wide association study. Pharmacogenomics J. 2017;17(4):312–318.
  • Clarelli F, Liberatore G, Sorosina M, et al. Pharmacogenetic study of long-term response to interferon-β treatment in multiple sclerosis. Pharmacogenomics J. 2017;17(1):84–91.
  • Malhotra S, Río J, Urcelay E, et al. NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis. Brain. 2015;138(3):644–652.
  • Kulakova OG, Tsareva EY, Lvovs D, et al. Comparative pharmacogenetics of multiple sclerosis: IFN-β versus glatiramer acetate. Pharmacogenomics. 2014;15(5):679–685.
  • Kulakova OG, Tsareva EY, Boyko AN, et al. Allelic combinations of immune-response genes as possible composite markers of IFN-β efficacy in multiple sclerosis patients. Pharmacogenomics. 2012;13(15):1689–1700.
  • Weber F, Cepok S, Wolf C, et al. Single-nucleotide polymorphisms in HLA- and non-HLA genes associated with the development of antibodies to interferon-β therapy in multiple sclerosis patients. Pharmacogenomics J. 2012;12(3):238–245.
  • Núñez C, Cénit MC, Alvarez-Lafuente R, et al. HLA alleles as biomarkers of high-titre neutralising antibodies to interferon-β therapy in multiple sclerosis. J Med Genet. 2014;51(6):395–400.
  • Bedri SK, Fink K, Manouchehrinia A, et al. Multiple sclerosis treatment effects on plasma cytokine receptor levels. Clin Immunol. 2018;187:15–25.
  • De Andres C, García MI, Goicoechea H1, et al. Genes differentially expressed by methylprednisolone in vivo in CD4 T lymphocytes from multiple sclerosis patients: potential biomarkers. Pharmacogenomics J. 2018;18(1):98–105.
  • Ross CJ, Towfic F, Shankar J, et al. A pharmacogenetic signature of high response to Copaxone in late-phase clinical-trial cohorts of multiple sclerosis. Genome Med. 2017;9(1):50.
  • Nicolas A, Kenna KP, Renton AE, et al. Genome-wide analyses identify KIF5A as a novel ALS Gene. Neuron. 2018;97(6):1268–1283.
  • Dardiotis E, Aloizou AM, Siokas V, et al. The role of microRNAs in patients with amyotrophic lateral sclerosis. J Mol Neurosci. 2018;66(4):617–628.
  • Mehanna R, Hunter C, Davidson A, et al. Analysis of CYP2D6 genotype and response to tetrabenazine. Mov Disord. 2013;28(2):210–215.
  • Truelsen T, Piechowski-Józwiak B, Bonita R, et al. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol. 2006;13(6):581–598.
  • Zhang FL, Guo ZN, Wu YH, et al. Prevalence of stroke and associated risk factors: a population based cross sectional study from northeast China. BMJ Open. 2017;7(9):e015758.
  • Teh WL, Abdin E, Vaingankar JA, et al. Prevalence of stroke, risk factors, disability and care needs in older adults in Singapore: results from the WiSE study. BMJ Open. 2018;8(3):e020285.
  • Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520, 000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524–537.
  • Xu K, Liu X, Ott J, et al. The combined effects of cardiovascular disease related SNPs on ischemic stroke. J Neurol Sci. 2018;388:141–145.
  • Marini S, Crawford K, Morotti A, et al. Association of apolipoprotein E with intracerebral hemorrhage risk by race/ethnicity: a meta-analysis. JAMA Neurol. 2019;76(4):480–491. DOI:10.1001/jamaneurol.2018.4519.
  • Woo D, Deka R, Falcone GJ, et al. Apolipoprotein E, statins, and risk of intracerebral hemorrhage. Stroke. 2013;44(11):3013–3017.
  • Woo D, Falcone GJ, Devan WJ, et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet. 2014;94(4):511–521.
  • Anderson CD, Falcone GJ, Phuah CL, et al. Genetic variants in CETP increase risk of intracerebral hemorrhage. Ann Neurol. 2016;80(5):730–740.
  • Tsai CT, Chang SN, Chang SH, et al. Renin-angiotensin system gene polymorphisms predict the risk of stroke in patients with atrial fibrillation: a 10-year prospective follow-up study. Heart Rhythm. 2014;11(8):1384–1390.
  • Marini S, Devan WJ, Radmanesh F, et al. 17p12 Influences hematoma volume and outcome in spontaneous intracerebral hemorrhage. Stroke. 2018;49(7):1618–1625.
  • Traylor M, Malik R, Nalls MA, et al. Genetic variation at 16q24.2 is associated with small vessel stroke. Ann Neurol. 2017;81(3):383–394.
  • Rannikmäe K, Sivakumaran V, Millar H, et al. COL4A2 is associated with lacunar ischemic stroke and deep ICH: meta-analyses among 21, 500 cases and 40, 600 controls. Neurology. 2017;89(17):1829–1839.
  • Muiño E, Gallego-Fabrega C, Cullell N, et al. Systematic review of cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL. Int J Mol Sci. 2017;18(9):E1964.
  • Muiño E, Krupinski J, Carrera C, et al. An inflammatory polymorphisms risk scoring system for the differentiation of ischemic stroke subtypes. Mediators Inflamm. 2015;2015:569714.
  • Debette S, Kamatani Y, Metso TM, et al. Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nat Genet. 2015;47(1):78–83.
  • Esih K, Goričar K, Dolžan V, et al. The association between antioxidant enzyme polymorphisms and cerebral palsy after perinatal hypoxic-ischaemic encephalopathy. Eur J Paediatr Neurol. 2016;20(5):704–708.
  • Danese E, Raimondi S, Montagnana M, et al. Effect of CYP4F2, VKORC1, and CYP2C9 in influencing coumarin dose: a single-patient data meta-analysis in more than 15, 000 Individuals. Clin Pharmacol Ther. 2019;105(6):1477–1491.
  • Yi X, Cheng W, Lin J, et al. Interaction between COX-1 and COX-2 variants associated with aspirin resistance in Chinese stroke patients. J Stroke Cerebrovasc Dis. 2016;25(9):2136–2144.
  • Gallego-Fabrega C, Carrera C, Reny JL, et al. PPM1A methylation is associated with vascular recurrence in aspirin-treated patients. Stroke. 2016;47(7):1926–1929.
  • Wu Y, Zhou Y, Pan Y, et al. Impact of CYP2C19 polymorphism in prognosis of minor stroke or TIA patients with declined eGFR on dual antiplatelet therapy: CHANCE substudy. Pharmacogenomics J. 2018;18(6):713–720.
  • McDonough CW, McClure LA, Mitchell BD, et al. CYP2C19 metabolizer status and clopidogrel efficacy in the secondary prevention of small subcortical strokes (SPS3) study. J Am Heart Assoc. 2015;4(6):e001652.
  • Duconge J, Hernandez-Suarez DF. Potential usefulness of clopidogrel pharmacogenetics in cerebral endovascular procedures and carotid artery stenting. Curr Clin Pharmacol. 2017;12(1):11–17.
  • Kapedanovska-Nestorovska A, Dimovski AJ, Sterjev Z, et al. The AKR1D1*36 (rs1872930) allelic variant is independently associated with clopidogrel treatment outcome. Pharmgenomics Pers Med. 2019;12:287–295.
  • Sychev DA, Baturina OA, Mirzaev KB, et al. CYP2C19*17 may increase the risk of death among patients with an acute coronaty syndrome and non-valvular atrial fibrillation who receive clopidogrel and rivaroxaban. Pharmacogenomics Pers Med. 2020;13:29–37.
  • Gallego-Fabrega C, Carrera C, Reny JL, et al. TRAF3 epigenetic regulation is associated with vascular recurrence in patients with ischemic stroke. Stroke. 2016;47(5):1180–1186.
  • Mega JL, Walker JR, Ruff CT, et al. Genetics and the clinical response to warfarin and edoxaban: findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet. 2015;385(9984):2280–2287.
  • Seeger J, Wöhrle J. Apixaban: an update of the evidence for its place in the prevention of stroke in patients with atrial fibrillation. Care evidence. 2020;15:1–6. DOI:10.2147/CE.S172935.
  • Chen W, Wu L, Liu X, et al. Warfarin dose requirements with different genotypes of CYP2C9 and VKORC1 for patients with atrial fibrillation and valve replacement. Int J Clin Pharmacol Ther. 2017;55(2):126–132.
  • Kamali X, Wulasihan M1, Yang YC, et al. Association of GGCX gene polymorphism with warfarin dose in atrial fibrillation population in Xinjiang. Lipids Health Dis. 2013;12(1):149.
  • Magvanjav O, McDonough CW, Gong Y, et al. Pharmacogenetic associations of β1-adrenergic receptor polymorphisms with cardiovascular outcomes in the SPS3 Trial (Secondary Prevention of Small Subcortical Strokes). Stroke. 2017;48(5):1337–1343.
  • Yi X, Zhou Q, Wang C, et al. Platelet receptor Gene (P2Y12, P2Y1) and platelet glycoprotein Gene (GPIIIa) polymorphisms are associated with antiplatelet drug responsiveness and clinical outcomes after acute minor ischemic stroke. Eur J Clin Pharmacol. 2017;73(4):437–443.
  • Sørensen IF, Vazquez AI, Irvin MR, et al. Pharmacogenetic effects of ‘candidate gene complexes’ on stroke in the GenHAT study. Pharmacogenet Genomics. 2014;24(11):556–563.
  • Kampouraki E, Kamali F. Pharmacogenetics of anticoagulants used for stroke prevention in patients with atrial fibrillation. Expert Opin Drug Metab Toxicol. 2019;15(6):449–458. DOI:10.1080/17425255.2019.1623878.
  • Saliba W, Rennert HS, Barnett-Griness O, et al. Association of statin use with spontaneous intracerebral hemorrhage: a cohort study. Neurology. 2018;91(5):400–409.
  • Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012;92(1):112–117.
  • Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–181.
  • Arrigoni E, Del Re M, Fidilio L, et al. Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. Int J Mol Sci. 2017;18(1):E104.
  • Ward NC, Watts GF, Eckel RH, et al. Statin toxicity: Mechanistic insights and clinical implications. Circ Res. 2019;124:328–350.
  • Xiang Q, Chen SQ, Ma LY, et al. Association between SLCO1B1 T521C polymorphism and risk of statin-induced myopathy: a meta-analysis. Pharmacogenomics J. 2018;18(6):721–729. DOI:10.1038/s41397-018-0054-0.
  • Ramsey LB, Johnson SG, Caudle KE1, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–428.
  • Isackson PJ, Wang J, Zia M, et al. RYR1 and CACNA1S genetic variants identified with statin-associated muscle symptoms. Pharmacogenomics. 2018;19(16):1235–1249.
  • Floyd JS, Bloch KM, Brody JA, et al. Pharmacogenomics of statin-related myopathy: meta-analysis of rare variants from whole-exome sequencing. PLoS One. 2019;14(6):e0218115.
  • Sai K, Kajinami K, Akao H, et al. A possible role for HLA-DRB1*04:06 in statin-related myopathy in Japanese patients. Drug Metab Pharmacokinet. 2016;31(6):467–470.
  • Pomes LM, Guglielmetti M, Bertamino E, et al. Optimising migraine treatment: from drug-drug interactions to personalized medicine. J Headache Pain. 2019;20(1):56.
  • Anttila V, Wessman M, Kallela M, et al. Genetics of migraine. Handb Clin Neurol. 2018;148:493–503.
  • Capi M, Gentile G, Lionetto L, et al. Pharmacogenetic considerations for migraine therapies. Expert Opin Drug Metab Toxicol. 2018;14(11):1161–1167.
  • Katsarou MS, Papasavva M, Latsi R, et al. Population-based analysis of cluster headache-associated genetic polymorphisms. J Mol Neurosci. 2018;65(3):367–376.
  • Schürks M, Frahnow A, Diener HC, et al. Bi-allelic and tri-allelic 5-HTTLPR polymorphisms and triptan non-response in cluster headache. J Headache Pain. 2014;15(1):46.
  • Gan J, Cai Q, Galer P, et al. Mapping the knowledge structure and trends of epilepsy genetics over the past decade: a co-word analysis based on medical subject headings terms. Medicine (Baltimore). 2019;98(32):e16782.
  • Al-Eitan LN, Al-Dalalah IM, Mustafa MM, et al. Effects of MTHFR and ABCC2 gene polymorphisms on antiepileptic drug responsiveness in Jordanian epileptic patients. Pharmgenomics Pers Med. 2019;12:87–95.
  • Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet. 2019;393(10172):689–701.
  • He ZW, Qu J, Zhang Y, et al. PRRT2 mutations are related to febrile seizures in epileptic patients. Int J Mol Sci. 2014;15(12):23408–23417.
  • Haerian BS, Baum L, Kwan P, et al. Contribution of GABRG2 polymorphisms to risk of epilepsy and febrile seizure: a multicenter cohort study and meta-analysis. Mol Neurobiol. 2016;53(8):5457–5467.
  • Zhu -M-M, Li H-L, Shi L-H, et al. The pharmacogenomics of valproic acid. J Hum Genet. 2017;62(12):1009–1014.
  • Zhu X, Yun W, Sun X, et al. Effects of major transporter and metabolizing enzyme gene polymorphisms on carbamazepine metabolism in Chinese patients with epilepsy. Pharmacogenomics. 2014;15(15):1867–1879.
  • Wang P, Lin XQ, Cai WK, et al. Effect of UGT2B7 genotypes on plasma concentration of valproic acid: a meta-analysis. Eur J Clin Pharmacol. 2018;74(4):433–442.
  • Hung CC, Ho JL, Chang WL, et al. Association of genetic variants in six candidate genes with valproic acid therapy optimization. Pharmacogenomics. 2011;12(8):1107–1117.
  • Li X, Zhang J, Wu X, et al. Polymorphisms of ABAT, SCN2A and ALDH5A1 may affect valproic acid responses in the treatment of epilepsy in Chinese. Pharmacogenomics. 2016;17(18):2007–2014. DOI:10.2217/pgs-2016-0093.
  • Noai M, Soraoka H, Kajiwara A, et al. Cytochrome P450 2C19 polymorphisms and valproic acid-induced weight gain. Acta Neurol Scand. 2016;133(3):216–223.
  • Li H, Wang X, Zhou Y, et al. Association of LEPR and ANKK1 gene polymorphisms with weight gain in epilepsy patients receiving valproic acid. Int J Neuropsychopharmacol. 2015;18(7):pyv021.
  • Xu S, Chen Y, Zhao M, et al. Population pharmacokinetics of valproic acid in epileptic children: effects of clinical and genetic factors. Eur J Pharm Sci. 2018;122:170–178.
  • Wen ZP, Fan SS, Du C, et al. Influence of acylpeptide hydrolase polymorphisms on valproic acid level in Chinese epilepsy patients. Pharmacogenomics. 2016;17(11):1219–1225. DOI:10.2217/pgs-2016-0030.
  • Li Q, Li QQ, Jia JN, et al. Sodium valproate ameliorates neuronal apoptosis in a kainic acid model of epilepsy via enhancing PKC-dependent GABAAR γ2 serine 327 phosphorylation. Neurochem Res. 2018;43(12):2343–2352.
  • Ogusu N, Saruwatari J, Nakashima H, et al. Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis. PLoS One. 2014;9(11):e111066.
  • Koomdee N, Pratoomwun J, Jantararoungtong T, et al. Association of HLA-A and HLA-B alleles with lamotrigine-induced cutaneous adverse drug reactions in the Thai population. Front Pharmacol. 2017;8:879.
  • Shirzadi M, Reimers A, Helde G, et al. No association between non-bullous skin reactions from lamotrigine and heterozygosity of UGT1A4 genetic variants *2(P24T) or *3(L48V) in Norwegian patients. Seizure. 2017;45:169–171.
  • Chen Y, Xu S, Wang Z, et al. A population pharmacokinetic-pharmacogenetic model of lamotrigine in Chinese children with wpilepsy. Ther Drug Monit. 2018;40(6):730–737.
  • Shen CH, Zhang YX, Lu RY, et al. Specific OCT1 and ABCG2 polymorphisms are associated with lamotrigine concentrations in Chinese patients with epilepsy. Epilepsy Res. 2016;127:186–190.
  • Zhou Y, Wang X, Li H, et al. Polymorphisms of ABCG2, ABCB1 and HNF4α are associated with lamotrigine trough concentrations in epilepsy patients. Drug Metab Pharmacokinet. 2015;30(4):282–287.
  • Phillips EJ, Sukasem C, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther. 2018;103(4):574–581. DOI:10.1002/cpt.1004.
  • Liu Y, Yu Y, Nie X, et al. Association between HLA-B*15:02 and oxcarbazepine-induced cutaneous adverse reaction: a meta-analysis. Pharmacogenomics. 2018;19(6):547–552.
  • Chen CB, Hsiao YH, Wu T, et al. Taiwan severe cutaneous adverse reaction consortium. Risk and association of HLA with oxcarbazepine-induced cutaneous adverse reactions in Asians. Neurology. 2017;88(1):78–86.
  • Cheung YK, Cheng SH, Chan EJ, et al. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia. 2013;54(7):1307–1314.
  • Aoki M, Hosono N, Takata S, et al. New pharmacogenetic test for detecting an HLA-A*31: 01 allele using the InvaderPlus assay. Pharmacogenet Genomics. 2012;22(6):441–446.
  • Mockenhaupt M, Wang CW, Hung SI, et al. HLA-B*57:01 confers genetic susceptibility to carbamazepine-induced SJS/TEN in Europeans. Allergy. 2019;74(11):2227–2230.
  • Sukasem C, Chaichan C, Nakkrut T, et al. Association between HLA-B alleles and carbamazepine-induced maculopapular exanthema and severe cutaneous reactions in Thai patients. J Immunol Res. 2018;2018:2780272.
  • Kulkantrakorn K, Tassaneeyakul W, Tiamkao S, et al. HLA-B*1502 strongly predicts carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Thai patients with neuropathic pain. Pain Pract. 2012r;12(3):202–208.
  • Zhou BT, Zhou QH, Yin JY, et al. Effects of SCN1A and GABA receptor genetic polymorphisms on carbamazepine tolerability and efficacy in Chinese patients with partial seizures: 2-year longitudinal clinical follow-up. CNS Neurosci Ther. 2012;18(7):566–572.
  • Shen C, Zhang B, Liu Z, et al. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy. Seizure. 2017;51:102–106.
  • Djordjevic N, Jankovic SM, Milovanovic JR. Pharmacokinetics and pharmacogenetics of carbamazepine in children. Eur J Drug Metab Pharmacokinet. 2017;42(5):729–744.
  • Wang P, Yin T, Ma HY, et al. Effects of CYP3A4/5 and ABCB1 genetic polymorphisms on carbamazepine metabolism and transport in Chinese patients with epilepsy treated with carbamazepine in monotherapy and bitherapy. Epilepsy Res. 2015;117:52–57.
  • Ma CL, Jiao Z, Wu XY, et al. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics. 2015a;16(13):1499–1512.
  • Ma CL, Wu XY, Jiao Z, et al. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy. Pharmacogenomics. 2015b;16(4):347–360.
  • Hung CC, Chang WL, Ho JL, et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics. 2012a;13(2):159–169.
  • Hung CC, Huang HC, Gao YH, et al. Effects of polymorphisms in six candidate genes on phenytoin maintenance therapy in Han Chinese patients. Pharmacogenomics. 2012b;13(12):1339–1349.
  • Chung WH, Chang WC, Lee YS, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA. 2014;312(5):525–534.
  • Tassaneeyakul W, Prabmeechai N, Sukasem C, et al. Associations between HLA class I and cytochrome P450 2C9 genetic polymorphisms and phenytoin-related severe cutaneous adverse reactions in a Thai population. Pharmacogenet Genomics. 2016;26(5):225–234.
  • Su SC, Chen CB, Chang WC, et al. HLA Alleles and CYP2C9*3 as predictors of phenytoin hypersensitivity in East Asians. Clin Pharmacol Ther. 2019;105(2):476–485.
  • McCormack M, Gui H, Ingason A, et al. Genetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients. Neurology. 2018;90(4):e332–e341.
  • Glauser TA, Holland K, O’Brien VP, et al. Pharmacogenetics of antiepileptic drug efficacy in childhood absence epilepsy. Ann Neurol. 2017;81(3):444–453.
  • Rogawski MA. The intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs. Epilepsia. 2013;54(2):33–40.
  • Haerian BS, Roslan H, Raymond AA, et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure. 2010;19(6):339–346.
  • Ajmi M, Boujaafar S, Zouari N, et al. Association between ABCB1 polymorphisms and response to first-generation antiepileptic drugs in a Tunisian epileptic population. Int J Neurosci. 2018;128(8):705–714.
  • Qu J, Zhou BT, Yin JY, et al. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci Ther. 2012;18(8):647–651.
  • Lv N, Qu J, Long H, et al. Association study between polymorphisms in the CACNA1A, CACNA1C, and CACNA1H genes and drug-resistant epilepsy in the Chinese Han population. Seizure. 2015;30:64–69.
  • Daci A, Bozalija A, Jashari F, et al. Individualizing treatment approaches for epileptic patients with glucose transporter type1 (GLUT-1) deficiency. Int J Mol Sci. 2018;19(1):s.
  • Ma CL, Wu XY, Zheng J, et al. Association of SCN1A, SCN2A and ABCC2 gene polymorphisms with the response to antiepileptic drugs in Chinese Han patients with epilepsy. Pharmacogenomics. 2014;15(10):1323–1336.
  • Sha’ari HM, Haerian BS, Baum L, et al. ABCC2 rs2273697 and rs3740066 polymorphisms and resistance to antiepileptic drugs in Asia Pacific epilepsy cohorts. Pharmacogenomics. 2014;15(4):459–466.
  • Lotte J, Bast T, Borusiak P, et al. Effectiveness of antiepileptic therapy in patients with PCDH19 mutations. Seizure. 2016;35:106–110.
  • Kouga T, Shimbo H, Iai M, et al. Effect of CYP2C19 polymorphisms on stiripentol administration in Japanese cases of Dravet syndrome. Brain Dev. 2015;37(2):243–249.
  • Hung CC, Chen PL, Huang WM, et al. Gene-wide tagging study of the effects of common genetic polymorphisms in the α subunits of the GABA(A) receptor on epilepsy treatment response. Pharmacogenomics. 2013;14(15):1849–1856. DOI:10.2217/pgs.13.158.
  • Beckett RD, Kisor DF, Smith T, et al. Systematic evaluation of clinical practice guidelines for pharmacogenomics. Pharmacogenomics. 2018;19(8):693–700. DOI:10.2217/pgs-2018-0024.
  • Cecchin E, Roncato R, Guchelaar HJ, et al. Ubiquitous pharmacogenomics (U-PGx): the time for implementation is now. An horizon2020 program to drive pharmacogenomics into clinical practice. Curr Pharm Biotechnol. 2017;18(3):204–209.
  • Qin W, Du Z, Xiao J, et al. Evaluation of clinical impact of pharmacogenomics knowledge involved in CPIC guidelines on Chinese pediatric patients. Pharmacogenomics. 2020;21(3):209–219.
  • Fabbri C, Serretti A. Genetics of treatment outcomes in major depressive disorder: present and future. Clin Psychopharmacol Neurosci. 2020;18(1):1–9.
  • Popejoy AB. Diversity in precision medicine and pharmacogenetics: methodlogical and conceptual considerations for broadening participation. Pharmac Pers Med. 2019;12:257–271.
  • Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci. 2015;16(12):30483–30543.
  • Torrellas C, Carril JC, Cacabelos R. Optimization of antidepressant use with pharmacogenetic strategies. Cur Genomics. 2017;18:442–449.
  • Cheung SR, Summerour RB, Cui X, et al. Testing for CYP polymorphisms is associated with a reduction in the frequency of changes in psychotropic prescriptions made by community psychiatrists. J Genomic Med Pharmacogenomics. 2016;1:76–80.
  • Haga SB. Pharmacogenomic testing in pediatrics: navigating the ethical, social, and legal challenges. Pharmacs Pers Med. 2019;12:273–285.
  • Heath L, Gray SL, Boudreau DM, et al. Cumulative antidepressant use and risk of dementia in a prospective cohort study. J Am Geriatr Soc. 2018;66(10):1948–1955.
  • Kirgaval RS, Revanakar S, Srirangapattna C. Prevalence of extrapyramidal side effects in patients on antipsychotics drugs at a tertiary care center. J Psychiatry. 2017;20:419.
  • Cacabelos R. Pathoepigenetics: the role of epigenetic biomarkers in disease pathogenesis. In: Cacabelos R, editor. Pharmacoepigenetics. Oxford: Academic Press/Elsevier; 2019. p. 139–189.
  • Roses AD, Saunders AM, Lutz MW, et al. New applications of disease genetics and pharmacogenetics to drug development. Curr Opin Pharmacol. 2014;14:81–89.
  • Otsubo Y. Use of pharmacogenomics and biomarkers in the development of new drugs for Alzheimer disease in Japan. Clin Ther. 2015;37(8):1627–1631.
  • Ferroni L, Della Puppa A, D’Avella D, et al. Tissue engineering strategies as tools for personalized meningioma treatment. Artif Organs. 2015;39(7):E114–26.
  • Carlson RJ, Doucette JR, Nazarali AJ. Current developments in pharmacogenomics of multiple sclerosis. Cell Mol Neurobiol. 2014;34(8):1081–1085.
  • Dendrou CA, Bell JI, Fugger L. A clinical conundrum: the detrimental effect of TNF antagonists in multiple sclerosis. Pharmacogenomics. 2013;14(12):1397–1404.
  • Benjamin ER, Della Valle MC, Wu X, et al. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet Med. 2017;19(4):430–438.
  • Bennett LL, Turcotte K. Eliglustat tartrate for the treatment of adults with type 1 Gaucher disease. Drug Des Devel Ther. 2015;9:4639–4647.
  • Dervan AP, Deverka PA, Trosman JR, et al. Payer decision making for next-generation sequencing-based genetic tests: insights from cell-free DNA prenatal screening. Genet Med. 2017;19(5):559–567.
  • Cacabelos R, Carril JC, Cacabelos N, et al. Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. Int J Mol Sci. 2019;20(5):E1249.
  • Cacabelos R, Torrellas C. Epigenetic drug discovery for Alzheimer’s disease. Expert Opin Drug Discov. 2014;9(9):1059–1086.
  • Cacabelos R. How plausible is an Alzheimer’s disease vaccine? Expert Opin Drug Discov. 2019;1–6. DOI:10.1080/17460441.2019.1667329
  • Song M, Yang X, Ren X, et al. Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nat Genet. 2019;51(8):1252–1262.
  • Rexach J, Lee H, Martinez-Agosto JA, et al. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol. 2019;18(5):492–503.
  • Kalilani L, Sun X, Pelgrims B, et al. The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia. 2018;59(12):2179–2193.
  • Kong ST, Ho CS, Ho PC, et al. Prevalence of drug resistant epilepsy in adults with epilepsy attending a neurology clinic of a tertiary referral hospital in Singapore. Epilepsy Res. 2014;108(7):1253–1262.
  • Kalozoumi G, Kel-Margoulis O, Vafiadaki E, et al. Glial responses during epileptogenesis in Mus musculus point to potential therapeutic targets. PLoS One. 2018;13(8):e0201742.
  • Orlandi A, Paolino MC, Striano P, et al. Clinical reappraisal of the influence of drug-transporter polymorphisms in epilepsy. Expert Opin Drug Metab Toxicol. 2018;14(5):505–512.
  • Mitchell D, Guertin JR, Dubois A, et al. A discrete event simulation model to assess the economic value of a hypothetical pharmacogenomics test for statin-induced myopathy in patients initiating a statin in secondary cardiovascular prevention. Mol Diagn Ther. 2018;22(2):241–254.
  • Chen Z, Liew D, Kwan P. Real-world cost-effectiveness of pharmacogenetic screening for epilepsy treatment. Neurology. 2016;86(12):1086–1094.
  • Mitropoulou C, Fragoulakis V, Bozina N, et al. Economic evaluation of pharmacogenomic-guided warfarin treatment for elderly Croatian atrial fibrillation patients with ischemic stroke. Pharmacogenomics. 2015;16(2):137–148.
  • You JH. Pharmacogenetic-guided selection of warfarin versus novel oral anticoagulants for stroke prevention in patients with atrial fibrillation: a cost-effectiveness analysis. Pharmacogenet Genomics. 2014;24(1):6–14.
  • Pink J, Pirmohamed M, Lane S, et al. Cost-effectiveness of pharmacogenetics-guided warfarin therapy vs. alternative anticoagulation in atrial fibrillation. Clin Pharmacol Ther. 2014;95(2):199–207.
  • Dionne F, Mitton C, Rassekh R, et al. Economic impact of a genetic test for cisplatin-induced ototoxicity. Pharmacogenomics J. 2012;12(3):205–213.
  • Lala A, Berger JS, Sharma G, et al. Genetic testing in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a cost-effectiveness analysis. J Thromb Haemost. 2013;11(1):81–91.
  • Powell G, Holmes EA, Plumpton CO, et al. Pharmacogenetic testing prior to carbamazepine treatment of epilepsy: patients’ and physicians’ preferences for testing and service delivery. Br J Clin Pharmacol. 2015;80(5):1149–1159.
  • Ostergren JE, Gornick MC, Carere DA, et al. How well do customers of direct-to-consumer personal genomic testing services comprehend genetic test results? Findings from the Impact of personal genomics study. Public Health Genomics. 2015;18(4):216–224.
  • Mao XY, Dai JX, Zhou HH, et al. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget. 2016;7(22):33461–33471.
  • Danielyan L, Beer-Hammer S, Stolzing A, et al. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell Transplant. 2014;23(1):123–139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.