Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 5, 2020 - Issue 4
32
Views
0
CrossRef citations to date
0
Altmetric
Review

The outlook for precision medicine for the treatment of chronic hepatitis C infection: challenges and opportunities

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 253-263 | Received 17 Jan 2020, Accepted 30 Apr 2020, Published online: 09 Jun 2020

References

  • Katsnelson A. Momentum grows to make “personalized” medicine more “precise.”. Nat Med. 2013;19(3):249.
  • Zhang XD. Precision medicine, personalized medicine, omics and big data: concepts and relationships. J Pharmacogenomics Pharmacoproteomics. 2015;6(1):1000e144.
  • Enomoto N, Sakuma I, Asahina Y, et al. Mutations in thenonstructural protein 5A gene and response to interferon in patientswith chronic hepatitis C virus 1b infection. N Engl J Med. 1996;334:77–81.
  • Khorsi H, Castelain S, Wyseur A, et al. Mutations of hepatitis C virus 1b NS5A 2209-2248 amino acid sequence do not predict the response to recombinant interferon-alfa therapy in French patients. J Hepatol. 1997;27:72–77.
  • Odeberg J, Yun Z, Sonnerborg A, et al. Variation in the hepatitis C virus NS5a region in relation to hypervariable region 1 heterogeneity during interferon treatment. J Med Virol. 1998;56:33–38.
  • EASL Clinical Practice. Guidelines: management of hepatitis C virus infection. J Hepatol. 2011;55:j 245–264.
  • Foster GR, Hézode C, Bronowicki JP, et al. Telaprevir alone or with peginterferon and ribavirin reduces HCV RNA in patients with chronic genotype 2 but not genotype 3 infections. Gastroenterology. 2011;141:881–889.e1).
  • Gottwein JM, Scheel TK, Jensen TB, et al. Differential efficacy of protease inhibitors against HCV genotypes 2a, 3a, 5a, and 6a NS3/4A protease recombinant viruses. Gastroenterology. 2011;141:1067‐ 1079.
  • Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009 Sep 17;461(7262):399–401.
  • Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009 Oct;41(10):1105–1109.
  • Gonzalez-Aldaco K, Rebello Pinho JR, Roman S, et al. Association with spontaneous hepatitis C viral clearance and genetic differentiation of IL28B/IFNL4 haplotypes in populations from Mexico. PLoS One. 2016;11(1):e0146258.
  • Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009 Oct;41(10):1100–1104.
  • Luo Y, Jin C, Ling Z, et al. Association study of IL28B: rs12979860 and rs8099917 polymorphisms with SVR in patients infected with chronic HCV genotype 1 to PEG-INF/RBV therapy using systematic meta-analysis. Gene. 2013;513:292–296.
  • Afdhal NH, McHutchison JG, Zeuzem S, et al. Hepatitis C pharmacogenetics: state of the art in 2010. Hepatology. 2011 Jan;53(1):336–345.
  • De Nicola S, Aghemo A, Rumi MG, et al. Interleukin 28B polymorphism predicts pegylated interferon plus ribavirin treatment outcome in chronic hepatitis C genotype 4. Hepatology. 2012 Feb;55(2):336–342.
  • Asselah T, De Muynck S, Broët P, et al. IL28B polymorphism is associated with treatment response in patients with genotype 4 chronic hepatitis C. J Hepatol. 2012 Mar;56(3):527–532.
  • Sarrazin C, Susser S, Doehring A, et al. Importance of IL28B gene polymorphisms in hepatitis C virus genotype 2 and 3 infected patients. J Hepatol. 2011 Mar;54(3):415–421.
  • Mangia A, Thompson AJ, Santoro R, et al. An IL28B polymorphism determines treatment response of hepatitis C virus genotype 2 or 3 patients who do not achieve a rapid virologic response. Gastroenterology. 2010 Sep;139(3):821–7, 827.e1.
  • Mansoor S, Riaz S, Kausar S, et al. Can IFNL3 polymorphisms predict response to interferon/ribavirin treatment in hepatitis C patients with genotype 3? J Gen Virol. 2016 Oct;97(10):2592–2598.
  • Jiménez-Sousa MA, Fernández-Rodríguez A, Guzmán-Fulgencio M, et al. Meta-analysis: implications of interleukin-28B polymorphisms in spontaneous and treatment-related clearance for patients with hepatitis C. BMC Med. 2013 Jan 8;11:6.
  • Thompson AJ, Muir AJ, Sulkowski MS, et al. Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology. 2010 Jul;139(1):120–9.e18.
  • Bochud PY, Bibert S, Negro F, et al. IL28B polymorphisms predict reduction of HCV RNA from the first day of therapy in chronic hepatitis C. J Hepatol. 2011 Nov;55(5):980–988.
  • Mangia A, Thompson AJ, Santoro R, et al. Limited use of interleukin 28B in the setting of response-guided treatment with detailed on-treatment virological monitoring. Hepatology. 2011 Sep 2;54(3):772–780.
  • Mandorfer M, Neukam K, Reiberger T, et al. The impact of interleukin 28B rs12979860 single nucleotide polymorphism and liver fibrosis stage on response-guided therapy in HIV/HCV-coinfected patients. AIDS. 2013 Nov 13;27(17):2707–2714.
  • Scherzer TM, Stättermayer AF, Strasser M, et al. Impact of IL28B on treatment outcome in hepatitis C virus G1/4 patients receiving response-guided therapy with peginterferon alpha-2a (40KD)/ribavirin. Hepatology. 2011;54(5):1518–1526.
  • Sugawara K, Koushima Y, Inao M, et al. Multicenter prospective study to optimize the efficacy of triple therapy with telaprevir in patients with genotype 1b hepatitis C virus infection according to an algorithm based on the drug Adherence, IL-28B Gene Allele and Viral Response Trial (AG & RGT). Hepatol Res. 2015 Nov;45(11):1091–1099.
  • Calisti G, Tavares A, Macartney MJ, et al. IL28B genotype predicts response to chronic hepatitis C triple therapy with telaprevir or boceprevir in treatment naïve and treatment-experienced patients other than prior partial- and null-responders. Springerplus. 2015 Jul 16;4:357.
  • Bichoupan K, Tandon N, Martel-Laferriere V, et al. Factors associated with success of telaprevir- and boceprevir-based triple therapy for hepatitis C virus infection. World J Hepatol. 2017 Apr 18;9(11):551–561.
  • Poordad F, Bronowicki JP, Gordon SC, et al. Factors that predict response of patients with hepatitis C virus infection to boceprevir. Gastroenterology. 2012;143:608–618.
  • Pol S, Aerssens J, Zeuzem S, et al. Limited impact of IL28B genotype on response rates in telaprevir-treated patients with prior treatment failure. J Hepatol. 2013;58:883–889.
  • Manns M, Marcellin P, Pordad FP, et al. Simeprevir (TMC435) with peginterferon/ribavirin for treatment of chronic HCV genotype-1 infection in treatment naıve patients: results from QUEST-2, a phase III trial. J Hepatol. 2013;58(Suppl. 1):S568.
  • Forns X, Lawitz E, Zeuzem S, et al. Simeprevir with peginterferon and ribavirin leads to high rates of SVR in patients with HCV genotype 1 who relapsed after previous therapy: a phase 3 trial. Gastroenterology. 2014 Jun;146(7):1669–79.e3.
  • Prokunina-Olsson L, Muchmore B, Tang W, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013 Feb;45(2):164–171.
  • Franco S, Aparicio E, Parera M, et al. IFNL4 ss469415590 variant is a better predictor than rs12979860 of pegylated interferon-alpha/ribavirin therapy failure in hepatitis C virus/HIV-1 coinfected patients. AIDS. 2014 Jan 2;28(1):133–136.
  • Yu ML, Dai CY, Chen SC, et al. Human leukocyte antigen class I and II alleles and response to interferon-alpha treatment, in Taiwanese patients with chronic hepatitis C virus infection. J Infect Dis. 2003 Jul 1;188(1):62–65.
  • de Rueda PM, López-Nevot MÁ, Sáenz-López P, et al. Importance of host genetic factors HLA and IL28B as predictors of response to pegylated interferon and ribavirin. Am J Gastroenterol. 2011 Jul;106(7):1246–1254.
  • Askar M, Avery R, Corey R, et al. Lack of killer immunoglobulin-like receptor 2DS2 (KIR2DS2) and KIR2DL2 is associated with poor responses to therapy of recurrent hepatitis C virus in liver transplant recipients. Liver Transpl. 2009 Nov;15(11):1557–1563.
  • Vidal-Castiñeira JR, López-Vázquez A, Díaz-Peña R, et al. Effect of killer immunoglobulin-like receptors in the response to combined treatment in patients with chronic hepatitis C virus infection. J Virol. 2010 Jan;84(1):475–481.
  • Lange CM, Bojunga J, Ramos-Lopez E, et al. Vitamin D deficiency and a cyp27b1–1260 promoter polymorphism are associated with chronic Hepatitis C and poor response to interferon-alfa based therapy. J Hepatol. 2011;54:887–893.
  • Pineda JA, Caruz A, Di Lello FA, et al. Low-density lipoprotein receptor genotyping enhances the predictive value of IL28B genotype in HIV/hepatitis C virus-coinfected patients. AIDS. 2011 Jul 17;25(11):1415–1420.
  • Krishnan SM, Dixit NM. Ribavirin-induced anemia in hepatitis C virus patients undergoing combination therapy. PLoS Comput Biol. 2011 Feb 3;7(2):e1001072.
  • Fellay J, Thompson AJ, Ge D, et al. ITPA gene variants protect against anemia in patients treated for chronic hepatitis C. Nature. 2010;464(7287):405–408.
  • Thompson A, Fellay J, Patel K, et al. Variants in the ITPA gene protect against ribavirin-induced hemolytic anemia and decrease the need for ribavirin dose reduction. Gastroenterology. 2010;139:120–129.
  • D’Ambrosio R, Pasulo L, Puoti M, et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir in 723 patients with chronic hepatitis C. J Hepatol. 2019;70(3):379–387.
  • Kwo PY, Poordad F, Asatryan A, et al. Glecaprevir and pibrentasvir yield high response rates in patients with HCV genotype 1-6 without cirrhosis. J Hepatol. 2017;67(2):263–271.
  • González-Grande R, Jiménez-Pérez M, González Arjona C, et al. New approaches in the treatment of hepatitis C. World J Gastroenterol. 2016;22(4):1421–1432.
  • Chhatwal J, Chen Q, Ayer T, et al. Hepatitis C virus re-treatment in the era of direct-acting antivirals: projections in the USA. Aliment Pharmacol Ther. 2018 Apr;47(7):1023–1031.
  • Akuta N, Sezaki H, Suzuki F, et al. Retreatment efficacy and predictors of ledipasvir plus sofosbuvir to HCV genotype 1 in Japan. J Med Virol. 2017 Feb;89(2):284–290.
  • Iio E, Shimada N, Takaguchi K, et al. Clinical evaluation of sofosbuvir/ledipasvir in patients with chronic hepatitis C genotype 1 with and without prior daclatasvir/asunaprevir therapy. Hepatol Res. 2017 Nov;47(12):1308–1316.
  • Pedergnana V, Irving WL, Barnes E, et al. Impact of IFNL4 genetic variants on sustained virologic response and viremia in hepatitis C virus genotype 3 patients. J Interferon Cytokine Res. 2019;39(10):642–649.
  • Backus LI, Shahoumian TA, Belperio PS, et al. Impact of IFNL4-∆G genotype on sustained virologic response in hepatitis C genotype 1 patients treated with direct-acting antivirals. Diagn Microbiol Infect Dis. 2018;92(1):34–36.
  • O’Brien TR, Kottilil S, Pfeiffer RM. IFNL4 genotype is associated with virologic relapse after 8-week treatment with sofosbuvir, velpatasvir, and voxilaprevir. Gastroenterology. 2017 Dec;153(6):1694–1695.
  • https://www.hcvguidelines.org/evaluate/resistance. [cited 2020 Apr 5].
  • Dietz J, Susser S, Berkowski C, et al. Consideration of viral resistance for optimization of direct antiviral therapy of Hepatitis C virus genotype 1-infected patients. PLoS One. 2015;10(8):e0134395.
  • Wyles D, Mangia A, Cheng W, et al. Long-term persistence of HCV NS5A resistance-associated substitutions after treatment with the HCV NS5A inhibitor, ledipasvir, without sofosbuvir. Antivir Ther. 2018;23(3):229–238.
  • Pawlotsky JM. Hepatitis C virus resistance to direct-acting antiviral drugs in interferon-free regimens. Gastroenterology. 2016;151(1):70–86.
  • McCloskey RM, Liang RH, Joy JB, et al. Global origin and transmission of hepatitis C virus nonstructural protein 3 Q80K polymorphism. J Infect Dis. 2015;211:1288–1295.
  • Kwo P, Gitlin N, Nahass R, et al. Simeprevir plus sofosbuvir (12 and 8 weeks) in hepatitis C virus genotype 1-infected patients without cirrhosis: OPTIMIST-1, a phase 3, randomized study. Hepatology. 2016;64(2):370–380.
  • Kanwal F, Kramer J, Asch SM, et al. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology. 2017;153(4):996–1005.e1.
  • Simmons B, Saleem J, Heath K, et al. Long-term treatment outcomes of patients infected with hepatitis C virus: a systematic review and meta-analysis of the survival benefit of achieving a sustained virological response. Clin Infect Dis. 2015;61(5):730–740.
  • Tachi Y, Hirai T, Miyata A, et al. Progressive fibrosis significantly correlates with hepatocellular carcinoma in patients with a sustained virological response. Hepatol Res. 2015;45(2):238–246.
  • Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38(2):518–526.
  • Sterling RK, Lissen E, Clumeck N, et al. APRICOT Clinical Investigators. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317–1325.
  • Bachofner JA, Valli PV, Kröger A, et al. Direct antiviral agent treatment of chronic hepatitis C results in rapid regression of transient elastography and fibrosis markers fibrosis-4 score and aspartate aminotransferase-platelet ratio index. Liver Int. 2017;37(3):369–376.
  • Tsochatzis EA, Castera L. Assessing liver disease in HIV-HCV coinfected patients. Curr Opin HIV AIDS. 2015;10(5):316–322.
  • Sandrin L, Fourquet B, Hasquenoph JM, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705–1713.
  • Takeda T, Yasuda T, Nakayama Y, et al. Usefulness of noninvasive transient elastography for assessment of liver fibrosis stage in chronic hepatitis C. World J Gastroenterol. 2006;12(48):7768–7773.
  • Pan JJ, Bao F, Du E, et al. Morphometry confirms fibrosis regression from sustained virologic response to direct-acting antivirals for hepatitis C. Hepatol Commun. 2018;2(11):1320–1330.
  • D’Ambrosio R, Aghemo A, Fraquelli M, et al. The diagnostic accuracy of Fibroscan for cirrhosis is influenced by liver morphometry in HCV patients with a sustained virological response. J Hepatol. 2013;59(2):251–256.
  • Scheiner B, Mandorfer M, Schwabl P, et al. The impact of PNPLA3 rs738409 SNP on liver fibrosis progression, portal hypertension and hepatic steatosis in HIV/HCV coinfection. PLoS One. 2015 Nov 23;10(11):e0143429.
  • Moqueet N, Cooper C, Gill J, et al. Responder Interferon Lambda genotypes are associated with higher risk of liver fibrosis in HIV-Hepatitis C Virus Co-infection. J Infect Dis. 2016;214(1):80–86.
  • Medrano LM, Jiménez-Sousa MA, Fernández-Rodríguez A, et al. Genetic polymorphisms associated with liver disease progression in HIV/HCV-coinfected patients. AIDS Rev. 2017;19(1):3–15.
  • Huang H, Shiffman ML, Friedman S, et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology. 2007;46(2):297–306.
  • Dunn W, Vittal A, Zhao J, et al. PNPLA3 gene predicts clinical recovery after sustained virological response in decompensated hepatitis C cirrhosis. BMJ Open Gastroenterol. 2019;6(1):e000241. Published 2019 Mar 12.
  • Huang CF, Yeh ML, Huang CI, et al. Tolloid-like 1 genetic variants determine fibrosis regression in chronic hepatitis C patients with curative antivirals. Sci Rep. 2018;8(1):15058. Published 2018 Oct 10.
  • Probst A, Dang T, Bochud M, et al. Role of hepatitis C virus genotype 3 in liver fibrosis progression – a systematic review and meta-analysis. J Viral Hepat. 2011;18(11):745–759.
  • Kanwal F, Kramer JR, Ilyas J, et al. HCV genotype 3 is associated with an increased risk of cirrhosis and hepatocellular cancer in a national sample of U.S. Veterans with HCV. Hepatology. 2014;60(1):98–105.
  • van der Meer AJ, Veldt BJ, Feld JJ, et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis. JAMA. 2012;308(24):2584–2593.
  • Chang ML. Metabolic alterations and hepatitis C: from bench to bedside. World J Gastroenterol. 2016;22(4):1461–1476.
  • Fierro NA, Gonzalez-Aldaco K, Torres-Valadez R, et al. Immunologic, metabolic and genetic factors in hepatitis C virus infection. World J Gastroenterol. 2014;20(13):3443–3456.
  • Negro F. Abnormalities of lipid metabolism in hepatitis C virus infection.Gut. 2010;59:1279–1287.
  • Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab. 2010;21(1):33–40.
  • González-Aldaco K, Torres-Reyes LA, Ojeda-Granados C, et al. Immunometabolic effect of cholesterol in hepatitis C infection: implications in clinical management and antiviral therapy. Ann Hepatol. 2018;17(6):908–919.
  • Wozniak MA, Itzhaki RF, Faragher EB, et al., Trent HCV Study Group. Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus. Hepatology. 2002;36:456–463.
  • Gonzalez-Aldaco K, Roman S, Torres-Valadez R, et al. Hepatitis C virus clearance and less liver damage in patients with high cholesterol, low-density lipoprotein cholesterol and APOE ε4 allele. World J Gastroenterol. 2019;25(38):5826–5837.
  • Del Campo JA, Romero-Gomez M. Steatosis and insulin resistance in hepatitis C: a way out for the virus? World J Gastroenterol. 2009;15(40):5014–5019.
  • Lonardo A, LE A, Loria P, et al. Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology. 2004;126:586–597.
  • Pekow JR, Bhan AK, Zheng H, et al. Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer. 2007;109(12):2490–2496.
  • Blonsky JJ, Harrison SA. Review article: nonalcoholic fatty liver disease and hepatitis C virus–partners in crime. Aliment Pharmacol Ther. 2008;27(10):855–865.
  • Adinolfi LE, Gambardella M, Andreana A, et al. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology. 2001;33(6):1358–1364.
  • Hui JM, Sud A, Farrell GC, et al. Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression [corrected]. Gastroenterology. 2003;125(6):1695–1704.
  • Blanco JR, Rivero-Juarez A. HCV genotype 3: a wolf in sheep’s clothing. Expert Rev Anti Infect Ther. 2016;14(2):149–152.
  • Ryan MC, Desmond PV, Slavin JL, et al. Expression of genes involved in lipogenesis is not increased in patients with HCV genotype 3 in human liver. J Viral Hepat. 2011;18(1):53–60.
  • Chromy D, Schwabl P, Bucsics T, et al. Impact of SVR to IFN-free DAA therapy on steatosis in HIV/HCV coinfected patients. J Hepatol. 2018. 68:S548.
  • Noureddin M, Wong MM, Todo T, et al. Fatty liver in hepatitis C patients post-sustained virological response with direct-acting antivirals. World J Gastroenterol. 2018;24(11):1269–1277.
  • Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–1465.
  • Sagnelli C, Merli M, Uberti-Foppa C, et al. Impact of PNPLA3 variants on liver histology of 168 patients with HIV infection and chronic hepatitis C. Clin Microbiol Infect. 2016;22(4):372–378.
  • Núñez-Torres R, Macías J, Mancebo M, et al. The PNPLA3 genetic variant rs738409 influences the progression to cirrhosis in HIV/hepatitis C virus coinfected patients. PLoS One. 2016;11(12):e0168265.
  • Coppola N, Rosa Z, Cirillo G, et al. TM6SF2 E167K variant is associated with severe steatosis in chronic hepatitis C, regardless of PNPLA3 polymorphism. Liver Int. 2015;35(8):1959–1963.
  • Peng XE, Wu YL, Lu QQ, et al. MTTP polymorphisms and susceptibility to non-alcoholic fatty liver disease in a Han Chinese population. Liver Int. 2014;34(1):118–128.
  • Stevenson HL, Utay NS. Hepatic steatosis in HCV-infected persons in the direct-acting antiviral era. Trop Dis Travel Med Vaccines. 2016;2:21.
  • Mehta R, Birerdinc A, Younossi ZM. Host genetic variants in obesity-related nonalcoholic fatty liver disease. Clin Liver Dis. 2014;18(1):249–267.
  • Hernaez R. Genetic factors associated with the presence and progression of nonalcoholic fatty liver disease: a narrative review. Gastroenterol Hepatol. 2012;35(1):32–41.
  • European Association for the Study of the Liver. European association for the study of the liver. EASL recommendations on treatment of hepatitis C 2018. J Hepatol. 2018;69(2):461–511. Electronic address: [email protected].
  • Sangiovanni A, Prati GM, Fasani P, et al. The natural history of compensated cirrhosis due to hepatitis C virus: a 17-year cohort study of 214 patients. HEPATOLOGY. 2006;43:1303–1310.
  • Morgan RL, Baack B, Smith BD, et al. Eradication of hepatitis C virus infection and the development of hepatocellular carcinoma: a meta-analysis of observational studies. Ann Intern Med. 2013 Mar 5;158(5 Pt 1):329–337.
  • Singal AK, Singh A, Jaganmohan S, et al. Antiviral therapy reduces risk of hepatocellular carcinoma in patients with hepatitis C virus-related cirrhosis. Clin Gastroenterol Hepatol. 2010;8:192–199.
  • Merchante N, Merino E, Rodríguez-Arrondo F, et al. HIV/hepatitis C virus-coinfected patients who achieved sustained virological response are still at risk of developing hepatocellular carcinoma. AIDS. 2014 Jan 2;28(1):41–47.
  • Braks RE, Ganne-Carrie N, Fontaine H, et al. Effect of sustained virological response on long-term clinical outcome in 113 patients with compensated hepatitis C-related cirrhosis treated by interferon alfa and ribavirin. World J Gastroenterol. 2007;13:5648–5653.
  • Miki D, Ochi H, Hayes CN, et al. Variation in the DEPDC5 locus is associated with progression to hepatocellular carcinoma in chronic hepatitis C virus carriers. Nat Genet. 2011 Jul 3;43(8):797–800.
  • Kumar V, Kato N, Urabe Y, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43:455–458.
  • Burza MA, Motta BM, Mancina RM, et al. DEPDC5 variants increase fibrosis progression in Europeans with chronic hepatitis C virus infection. Hepatology. 2016 Feb;63(2):418–427.
  • Lange CM, Bibert S, Dufour JF, et al., Swiss Hepatitis C Cohort Study Group. Comparative genetic analyses point to HCP5 as susceptibility locus for HCV-associated hepatocellular carcinoma. J Hepatol. 2013 Sep; 59(3):504–509.
  • Walker AJ, Peacock CJ, Pedergnana V, et al. Host genetic factors associated with hepatocellular carcinoma in patients with hepatitis C virus infection: A systematic review. J Viral Hepat. 2018;25(5):442–456.
  • Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15(10):599–616.
  • Marisi G, Cucchetti A, Ulivi P, et al. Ten years of sorafenib in hepatocellular carcinoma: are there any predictive and/or prognostic markers? World J Gastroenterol. 2018;24(36):4152–4163.
  • Giordano S, Columbano A. Met as a therapeutic target in HCC: facts and hopes. J Hepatol. 2014;60(2):442–452.
  • Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19:2310–2318.
  • Rimassa L, Assenat E, Peck-Radosavljevic M, et al. Second-line tivantinib (ARQ 197) versus placebo in patients (Pts) with MET-high hepatocellular carcinoma (HCC): results of the METIV-HCC phase III trial. J Clin Oncol. 2017;35(Suppl 15):4000.
  • Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017;17:318–332.
  • Pérez AB, Chueca N, García-Deltoro M et al. Retreatment options after failing a first line of DAAs against hepatitis C virus [Abstract 566]. The Annual Conference on Retroviruses and Opportunistic Infections (CROI); 2017 Feb 13- 16; Seattle, Washington, USA.
  • Lawitz E, Flamm S, Yang JC, et al. Retreatment of patients who failed 8 or 12 weeks of ledipasvir/sofosbuvir-based regimens with ledipasvir/sofosbuvir for 24 weeks [Abstract 0005]. 50th Annual Meeting of the European Association for the Study of the Liver (EASL); 2015 April 22- 26;Vienna, Austria.
  • Perales C, Chen Q, Soria ME, et al. Baseline hepatitis C virus resistance-associated substitutions present at frequencies lower than 15% may be clinically significant. Infect Drug Resist. 2018;11:2207–2210.
  • Wang GP, Terrault N, Reeves JD, et al. Prevalence and impact of baseline resistance-associated substitutions on the efficacy of ledipasvir/sofosbuvir or simeprevir/sofosbuvir against GT1 HCV infection. Sci Rep. 2018;8(1):3199.
  • https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-occurrence-serious-liver-injury-use-hepatitis-c-medicines-mavyret-zepatier-and. [cited 2020 Apr 5].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.