Publication Cover
Expert Review of Precision Medicine and Drug Development
Personalized medicine in drug development and clinical practice
Volume 5, 2020 - Issue 6
168
Views
8
CrossRef citations to date
0
Altmetric
Review

Formulation, manufacturing and regulatory strategies for extracellular vesicles-based drug products for targeted therapy of central nervous system diseases

, , , &
Pages 469-481 | Received 24 Mar 2020, Accepted 17 Aug 2020, Published online: 12 Oct 2020

References

  • Spinelli C, Adnani L, Choi D, et al. Extracellular vesicles as conduits of non-coding RNA emission and intercellular transfer in brain tumors. Noncoding RNA. 2018;5(1):1.
  • Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun 01;9(6):654–659.
  • Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015 Jan 01;4(1):27066.
  • Epple LM, Griffiths SG, Dechkovskaia AM, et al. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. Plos One. 2012;7(7):e42064.
  • Babatunde KA, Yesodha Subramanian B, Ahouidi AD, et al. Role of extracellular vesicles in cellular cross talk in malaria [Review]. Front Immunol. 2020 Jan 31;11(22). DOI:10.3389/fimmu.2020.00022
  • Mathews PM, Levy E. Exosome production is key to neuronal endosomal pathway integrity in neurodegenerative diseases [Review]. Front Neurosci. 2019 Dec 12;13(1347). DOI:10.3389/fnins.2019.01347
  • Kalani MYS, Alsop E, Meechoovet B, et al. Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. J Extracell Vesicles. 2020 Jan 01;9(1):1713540.
  • McMillan HJ, Darras BT, Kang PB. Autoimmune neuromuscular disorders in childhood. Curr Treat Options Neurol. 2011 Sep 13;13(6):590.
  • Cheng Y, Pereira M, Raukar N, et al. Potential biomarkers to detect traumatic brain injury by the profiling of salivary extracellular vesicles. J Cell Physiol. 2019;234(8):14377–14388.
  • Jung H-Y, Lee C-H, Choi J-Y, et al. Potential urinary extracellular vesicle protein biomarkers of chronic active antibody-mediated rejection in kidney transplant recipients. J Chromatogr B. 2020 Feb 01;1138:121958.
  • Pisano C, Galley J, Elbahrawy M, et al. Human breast milk-derived extracellular vesicles in the protection against experimental necrotizing enterocolitis. J Pediatr Surg. 2020 Jan 01;55(1):54–58.
  • Ebert B, Rai AJ. Isolation and characterization of amniotic fluid-derived extracellular vesicles for biomarker discovery. Methods Mol Biol. 2019; 1885:287–294.
  • Lässer C, Théry C, Buzás EI, et al. The international society for extracellular vesicles launches the first massive open online course on extracellular vesicles. J Extracell Vesicles. 2016 Jan 01;5(1):34299.
  • György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011 Aug 01;68(16):2667–2688.
  • Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016 Mar 02;6(1):22519.
  • Willms E, Cabañas C, Mäger I, et al. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression [Review]. Front Immunol. 2018 Apr 30;9(738). DOI:10.3389/fimmu.2018.00738
  • Sun R, Wang H, Shi Y, et al. Changes in the morphology, number, and pathological protein levels of plasma exosomes may help diagnose alzheimer’s disease. J Alzheimers Dis. 2020;73(3):909–917.
  • Goetzl EJ, Yaffe K, Peltz CB, et al. Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. Faseb J. 2020;34(2):3359–3366.
  • Mondello S, Thelin EP, Shaw G, et al. Extracellular vesicles: pathogenetic, diagnostic and therapeutic value in traumatic brain injury. Expert Rev Proteomics. 2018 May 04;15(5):451–461.
  • Hill AF. Extracellular vesicles and neurodegenerative diseases. J Neurosci. 2019;39(47):9269–9273.
  • Kapogiannis D, Mustapic M, Shardell MD, et al. Association of extracellular vesicle biomarkers with Alzheimer disease in the baltimore longitudinal study of aging. JAMA Neurol. 2019;76(11):1340–1351.
  • Candelario KM, Balaj L, Zheng T, et al. Exosome/microvesicle content is altered in leucine-rich repeat kinase 2 mutant induced pluripotent stem cell-derived neural cells. J Comp Neurol. 2020;528(7):1203–1215.
  • Willis CM, Nicaise AM, Menoret A, et al. Extracellular vesicle fibrinogen induces encephalitogenic CD8+ T cells in a mouse model of multiple sclerosis. Proc Nat Acad Sci. 2019;116(21):10488–10493.
  • Sáenz-Cuesta M, Alberro A, Muñoz-Culla M, et al. The first dose of fingolimod affects circulating extracellular vesicles in multiple sclerosis patients. Int J Mol Sci. 2018;19(8):2448.
  • Otero-Ortega L, Laso-García F, Frutos MCG-D, et al. Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. Stem Cell Res Ther. 2020 Feb 19;11(1):70.
  • Yuxia H, Don S, Yuling M, et al. Multipotent mesenchymal stromal cell–derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg. 2018;131(1):290–300.
  • Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. Faseb J. 2018;32(1):512–528.
  • Eggers C, Arendt G, Hahn K, et al. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol. 2017 Aug 01;264(8):1715–1727.
  • Guha D, Lorenz DR, Misra V, et al. Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. J Neuroinflammation. 2019 Dec 05;16(1):254.
  • Tabernero J, Shapiro GI, LoRusso PM, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406–417.
  • Swaminathan M, Stafford-Smith M, Chertow GM, et al. Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. J Am Soc Nephrol. 2018 Jan;29(1):260–267.
  • Geeurickx E, Tulkens J, Dhondt B, et al. The generation and use of recombinant extracellular vesicles as biological reference material. Nat Commun. 2019 Jul 23;10(1):3288.
  • Szatanek R, Baran J, Siedlar M, et al. Isolation of extracellular vesicles: determining the correct approach (Review). Int J Mol Med. 2015 Jul;36(1):11–17. DOI:10.3892/ijmm.2015.2194
  • Au - DeMarino C, Au - Barclay RA, Au - Pleet ML, et al. Purification of high yield extracellular vesicle preparations away from virus. J Vis Exp. 2019 Sep 12;(151):10.3791/59876.Published 2019 Sep 12. DOI:10.3791/59876
  • Guideline IHT. Preclinical safety evaluation of biotechnology-derived pharmaceuticals s6 (r1).
  • Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles. 2015 Jan 01;4(1):30087.
  • Hegmans JPJJ, Bard MPL, Hemmes A, et al. Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol. 2004;164(5):1807–1815.
  • Welton JL, Khanna S, Giles PJ, et al. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics. 2010;9(6):1324–1338.
  • Wubbolts R, Leckie RS, Veenhuizen PT, et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. Journal Biol Chem. 2003 Mar 28;278(13):10963–10972.
  • Choi DS, Kim DK, Kim YK, et al. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev. 2015 Jul-Aug;34(4):474–490.
  • Bandu R, Oh JW, Kim KP. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp Mol Med. 2019;51(3):1–10.
  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002 Aug;2(8):569–579.
  • Munagala R, Aqil F, Jeyabalan J, et al. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016 Feb 1;371(1):48–61.
  • Yamashita T, Takahashi Y, Nishikawa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm. 2016 Jan;98:1–8.
  • Charoenviriyakul C, Takahashi Y, Morishita M, et al. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci. 2017 Jan 1;96:316–322.
  • Hong Y, Nam G-H, Koh E, et al. Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. Adv Funct Mater. 2018;28(5):1801301.
  • Lamparski HG, Metha-Damani A, Yao J-Y, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods. 2002 Dec 15;270(2):211–226.
  • Alvarez ML, Khosroheidari M, Kanchi Ravi R, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–1032.
  • Ueda K, Ishikawa N, Tatsuguchi A, et al. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep. 2015;4(1):6232.
  • Nakai W, Yoshida T, Diez D, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6(1):33935.
  • Koga K, Matsumoto K, Akiyoshi T, et al. Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res. 2005 Nov 1;25(6A):3703–3707.
  • Qazi KR, Gehrmann U, Domange Jordö E, et al. Antigen-loaded exosomes alone induce Th1-type memory through a B cell–dependent mechanism. Blood. 2009;113(12):2673–2683.
  • Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013 Jan;21(1):185–191.
  • Huang L, Gu N, Zhang X-E, et al. Light-inducible exosome-based vehicle for endogenous RNA loading and delivery to leukemia cells. Adv Funct Mater. 2019;29(9):1807189.
  • Pomatto MAC, Bussolati B, D’Antico S, et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol Ther Methods Clin Dev. 2019 Jun;14(13):133–144.
  • Serrano-Pertierra E, Oliveira-Rodríguez M, Rivas M, et al. Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering. 2019;6(1):8.
  • Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomed Nanotechnol biol Med. 2011 Dec 01;7(6):780–788.
  • Soo CY, Song Y, Zheng Y, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136(2):192–197.
  • De Toro J, Herschlik L, Waldner C, et al. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203.
  • Serrano-Pertierra E, Oliveira-Rodriguez M, Rivas M, et al. Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering (Basel). 2019 Jan 17;6(1). DOI:10.3390/bioengineering6020029
  • Stoner SA, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytometry Part A. 2016 Feb 01;89(2):196–206.
  • Morales-Kastresana A, Telford B, Musich TA, et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep. 2017 May 12;7(1):1878.
  • Jeong S, Park J, Pathania D, et al. Integrated magneto–electrochemical sensor for exosome analysis. ACS Nano. 2016;10(2):1802–1809.
  • Xu H, Liao C, Zuo P, et al. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal Chem. 2018;90(22):13451–13458.
  • Vogel R, Willmott G, Kozak D, et al. Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem. 2011;83(9):3499–3506.
  • Im H, Shao H, Park YI, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32(5):490–495.
  • Zhu L, Wang K, Cui J, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86(17):8857–8864.
  • Wang Q, Zou L, Yang X, et al. Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosens Bioelectron. 2019 Jun 15;135:129–136.
  • Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, et al. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J Nanobiotechnology. 2019 Jul 18;17(1):85.
  • Sun D, Zhuang X, Grizzle W, et al. Abstract 4446: A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Cancer Res. 2011;71(8 Supplement):4446.
  • Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010 Sep 01;18(9):1606–1614.
  • Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013 Sep 24;7(9):7698–7710.
  • Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed Nanotechnol Biol Med. 2016 Apr 01;12(3):655–664.
  • Saari H, Lázaro-Ibáñez E, Viitala T, et al. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015 Dec 28;220:727–737.
  • Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in danio rerio. Pharm Res. 2015 Jun 01;32(6):2003–2014.
  • Ying M, Zhuang J, Wei X, et al. Remote-loaded platelet vesicles for disease-targeted delivery of therapeutics. Adv Funct Mater. 2018;28(22):1801032.
  • Hatzidaki E, Vlachou I, Elka A, et al. The use of serum extracellular vesicles for novel small molecule inhibitor cell delivery. Anticancer Drugs. 2019;30(3):271–280.
  • Yang X, Shi G, Guo J, et al. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int J Nanomedicine. 2018;13:8095–8104.
  • Aqil F, Kausar H, Agrawal AK, et al. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016 Aug 01;101(1):12–21.
  • Didiot M-C, Hall LM, Coles AH, et al. Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol Ther. 2016 Oct 01;24(10):1836–1847.
  • Haraszti RA, Miller R, Didiot M-C, et al. Optimized cholesterol-siRNA chemistry improves productive loading onto extracellular vesicles. Mol Ther. 2018 Aug 01;26(8):1973–1982.
  • Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signaling. 2013 Nov 18;11(1):88.
  • Malhotra H, Sheokand N, Kumar S, et al. Exosomes: tunable nano vehicles for macromolecular delivery of transferrin and lactoferrin to specific intracellular compartment. J Biomed Nanotechnol. 2016;12(5):1101–1114.
  • Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015 Jun 10;207:18–30.
  • Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 2015 May 26;5(1):10112.
  • Lamichhane TN, Jeyaram A, Patel DB, et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng. 2016 Sep 01;9(3):315–324.
  • Zhi K. Formulation and fabrication of a novel subcutaneous implant for the zero-order release of selected protein and small molecule drugs. Temple University Libraries; 2017.
  • Momen-Heravi F, Bala S, Bukong T, et al. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine. 2014 Oct 01;10(7):1517–1527.
  • Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine. 2016 Sep 01;11(18):2431–2441.
  • Toffoli G, Hadla M, Corona G, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine. 2015 Oct 01;10(19):2963–2971.
  • Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014 Feb 01;35(7):2383–2390.
  • Greco KA, Franzen CA, Foreman KE, et al. PLK-1 silencing in bladder cancer by siRNA delivered with exosomes. Urology. 2016 May 01;91:241.e1-e7.
  • Lunavat TR, Jang SC, Nilsson L, et al. RNAi delivery by exosome-mimetic nanovesicles – implications for targeting c-Myc in cancer. Biomaterials. 2016 Sep 01;102:231–238.
  • Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015 Oct 05;12(10):3650–3657.
  • Kooijmans SAA, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. 2013 Nov 28;172(1):229–238.
  • Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016 Feb 25;6(1):21933.
  • Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015 May 10;205:35–44.
  • Pascucci L, Coccè V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release. 2014 Oct 28;192:262–270.
  • Aspe JR, Diaz Osterman CJ, Jutzy JMS, et al. Enhancement of Gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles. 2014 Jan 01;3(1):23244.
  • Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013 Jul 10;335(1):201–204.
  • Lin Y, Wu J, Gu W, et al. Exosome–Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. Adv Sci. 2018;5(4):1700611.
  • Yim N, Ryu S-W, Choi K, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat Commun. 2016 Jul 22;7(1):12277.
  • O’Brien K, Lowry MC, Corcoran C, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget. 2015;6(32):32774–32789.
  • Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015 Oct 29;8(1):122.
  • Shimbo K, Miyaki S, Ishitobi H, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014 Mar 07;445(2):381–387.
  • Cooper JM, Wiklander PBO, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord. 2014 Oct 01;29(12):1476–1485.
  • Umezu T, Ohyashiki K, Kuroda M, et al. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013 May 01;32(22):2747–2755.
  • King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012 Sep 24;12(1):421.
  • Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011 Apr 01;29(4):341–345. DOI:10.1038/nbt.1807
  • Jarlais DCD, Friedman SR. AIDS and legal access to sterile drug injection equipment. ANNALS Am Acad Political Social Sci. 1992;521(1):42–65.
  • FDA. Guidance for industry: sterile drug products produced by aseptic processing — current good manufacturing practice; 2004. Available from: www.fda.gov,editor
  • EMA. Guideline on the sterilisation of the medicinal product, active substance, excipient and primary container; 2019.
  • Stkwart DC, Hawthorne D, Evans DE. Cold sterile filtration: a small scale filtration test and investigation of membrane plugging. J Inst Brewing. 1998;104(6):321–326.
  • Wahlgren J, Karlson TDL, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40(17):e130–e130.
  • Zhang D, Lee H, Zhu Z, et al. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2017;312(1):L110–L121.
  • Kooijmans SA, Gitz-Francois JJ, Schiffelers RM, et al. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach. Nanoscale. 2018;10(5):2413–2426.
  • CDC. Steam sterilization: guideline for disinfection and sterilization in healthcare facilities (2008); 2008. Available from: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/sterilization/steam.html
  • Schulz E, Karagianni A, Koch M, et al. Hot EVs – how temperature affects extracellular vesicles. Eur J Pharm Biopharm. 2020 Jan 01;146:55–63.
  • Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005 Mar 02;3(1):10.
  • Navabi H, Croston D, Hobot J, et al. Preparation of human ovarian cancer ascites-derived exosomes for a clinical trial. Blood Cell Mol Dis. 2005 Sep 01;35(2):149–152.
  • Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 2008 Apr 01;16(4):782–790.
  • Morse MA, Garst J, Osada T, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005 Feb 21;3(1):9.
  • Andriolo G, Provasi E, Lo Cicero V, et al. Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method [Methods]. Front Physiol. 2018 Aug 24;9(1169). DOI:10.3389/fphys.2018.01169
  • Gimona M, Pachler K, Laner-Plamberger S, et al. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int J Mol Sci. 2017;18(6):1190.
  • Gong Y, Chowdhury P, Nagesh PKB, et al. Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci Rep. 2020 Mar 02;10(1):3835.
  • Gong Y, Zhi K, Nagesh PKB, et al. An elvitegravir nanoformulation crosses the blood–brain barrier and suppresses hiv-1 replication in microglia. Viruses. 2020;12(5):564.
  • Sterzenbach U, Putz U, Low L-H, et al. Engineered exosomes as vehicles for biologically active proteins. Mol Ther. 2017 Jun 07;25(6):1269–1278.
  • Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011 Oct 01;19(10):1769–1779.
  • Kumar S, Zhi K, Mukherji A, et al. Repurposing antiviral protease inhibitors using extracellular vesicles for potential therapy of COVID-19. Viruses. 2020;12(5):486.
  • Liberti L, Breckenridge A, Hoekman J, et al. Accelerating access to new medicines: current status of facilitated regulatory pathways used by emerging regulatory authorities. J Public Health Policy. 2016 Aug 01;37(3):315–333.
  • Liberti L, Breckenridge A, Hoekman J, et al., editors. Practical aspects of developing, implementing and using facilitated regulatory pathways in the emerging markets. Poster Drug Information Association Annual Meeting, Philadelphia, PA. 2016 Jun. DOI:10.13140/RG.2.2.31518.28486/1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.