242
Views
1
CrossRef citations to date
0
Altmetric
Plants and perfumes

Lavandula angustifolia Mill. a model of aromatic and medicinal plant to study volatile organic compounds synthesis, evolution and ecological functions

, , , &
Pages 65-76 | Received 25 Jul 2022, Accepted 09 Nov 2022, Published online: 12 Dec 2022

References

  • Adal AM, Mahmoud SS. 2020. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula). Plant Mol Biol. 102(4–5):517–535. doi:10.1007/s11103-020-00962-8.
  • Adal AM, Sarker LS, Lemke AD, Mahmoud SS. 2017. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia. Plant Mol Biol. 93(6):641–657. doi:10.1007/s11103-017-0588-6.
  • Alam P, Abdin MZ. 2011. Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep. 30(10):1919–1928. doi:10.1007/s00299-011-1099-6.
  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH. 1997. Terpenoid biosynthesis from 1-deoxy- d -xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA. 94(20):10600–10605. doi:10.1073/pnas.94.20.10600.
  • Aubourg S, Lecharny A, Bohlmann J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Gen Genomics. 267(6):730–745. doi:10.1007/s00438-002-0709-y.
  • Balfour NJ, Garbuzov M, Ratnieks FLW. 2013. Longer tongues and swifter handling: why do more bumble bees (Bombus spp.) than honey bees (Apis mellifera) forage on lavender (Lavandula spp.)?: longer tongues and swifter handling. Ecol Entomol. 38(4):323–329. doi:10.1111/een.12019.
  • Benachour K. 2017. Insect visitors of lavender (Lavandula officinalis L.): comparison of quantitative and qualitative interactions of the plant with its main pollinators. African Entomol. 25(2):435–444. doi:10.4001/003.025.0435.
  • Blanch J-S, Peñuelas J, Sardans J, Llusià J. 2009. Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. ActaPhysiol Plant. 31(1):207–218. doi:10.1007/s11738-008-0221-z.
  • Blight MM, Métayer ML, Delègue M-HP, Pickett JA, Marion-Poll F, Wadhams LJ. 1997. Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. J Chem Ecol. 23(7):1715–1727. doi:10.1023/B:JOEC.0000006446.21160.c1.
  • Boachon B, Buell CR, Crisovan E, Dudareva N, Garcia N, Godden G, Henry L, Kamileen MO, Kates HR, Kilgore MB, et al. 2018. Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol Plant. 11(8):1084–1096. doi:10.1016/j.molp.2018.06.002.
  • Bohlmann J, Crock J, Jetter R, Croteau R. 1998a. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA. 95(12):6756–6761. doi:10.1073/pnas.95.12.6756.
  • Bohlmann J, Meyer-Gauen G, Croteau R. 1998b. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA. 95(8):4126–4133. doi:10.1073/pnas.95.8.4126.
  • Boncan DAT, Tsang SSK, Li C, Lee IHT, Lam H-M, Chan T-F, Hui JHL. 2020. Terpenes and terpenoids in plants: interactions with environment and insects. IJMS. 21(19):7382. doi:10.3390/ijms21197382.
  • Borghi M, Fernie AR, Schiestl FP, Bouwmeester HJ. 2017. The sexual advantage of looking, smelling, and tasting good: the metabolic network that produces signals for pollinators. Trends Plant Sci. 22(4):338–350. doi:10.1016/j.tplants.2016.12.009.
  • 4Chen F, Tholl D, Bohlmann J, Pichersky E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom: terpene synthase family. Plant J. 66(1):212–229. doi:10.1111/j.1365-313X.2011.04520.x.
  • Christensen, JH, KK Kanikicharla, E Aldrian, SI An, IF Albuquerque Cavalcanti, M de Castro, W Dong, P Goswami, A Hall, JK Kanyanga, et al. 2013. Climate phenomena and their relevance for future regional climate change. In: Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 9781107057999, Cambridge University Press; pp. 1217–1308. doi:10.1017/CBO9781107415324.028.
  • Christianson DW. 2017. Structural and chemical biology of terpenoid cyclases. Chem Rev. 117(17):11570–11648. doi:10.1021/acs.chemrev.7b00287.
  • Couderc-Le Vaillant M, Segur-Fantino N, Couderc H. 1990. Phytodermological study of Lavandula angustifolia Mill. Revue de Cytologie Et de Biologie Végétales, Le Botaniste. 13:75–88.
  • Demissie ZA, Cella MA, Sarker LS, Thompson TJ, Rheault MR, Mahmoud SS. 2012. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula. Plant Mol Biol. 79(4–5):393–411. doi:10.1007/s11103-012-9920-3.
  • Demissie ZA, Erland Lauren AE, Rheault MR, Mahmoud SS. 2013. The biosynthetic origin of irregular monoterpenes in Lavandula. J Biol Chem. 288(9):6333–6341. doi:10.1074/jbc.M112.431171.
  • Demissie ZA, Sarker LS, Mahmoud SS. 2011. Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. Planta. 233(4):685–696. doi:10.1007/s00425-010-1332-5.
  • Despinasse, Y. 2015. Diversité chimique et caractérisation de l’impact du stress hydrique chez les lavandes [ thesis]. Saint-Etienne: Université Jean Monnet. NNT: 2015STET4012. tel-01548309:
  • Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicolè F, Baudino S, Magnard J-L, Jullien F. 2017. Bornyl-diphosphate synthase from Lavandula angustifolia: a major monoterpene synthase involved in essential oil quality. Phytochemistry. 137:24–33. doi:10.1016/j.phytochem.2017.01.015.
  • Despinasse Y, Moja S, Soler C, Jullien F, Pasquier B, Bessière J-M, Baudino S, Nicolè F. 2020. Structure of the chemical and genetic diversity of the true lavender over its natural range. Plants. 9(12):1640. doi:10.3390/plants9121640.
  • Dong Y, Li J, Zhang W, Bai H, Li H, Shi L. 2022. Exogenous application of methyl jasmonate affects the emissions of volatile compounds in lavender (Lavandula angustifolia). Plant Physiol Biochem. 185:25–34. doi:10.1016/j.plaphy.2022.05.022.
  • Fopa Fomeju B, Brunel D, Bérard A, Rivoal J-B, Gallois P, Le Paslier M-C, Bouverat-Bernier J-P. 2020. Quick and efficient approach to develop genomic resources in orphan species: application in Lavandula angustifolia.Fang DD, editor. PLoS ONE. 15(12):e0243853. doi:10.1371/journal.pone.0243853.
  • Frank L, Wenig M, Ghirardo A, Krol A, Vlot AC, Schnitzler J, Rosenkranz M. 2021. Isoprene and β‐caryophyllene confer plant resistance via different plant internal signalling pathways. Plant Cell Environ. 44(4):1151–1164. doi:10.1111/pce.14010.
  • Fraty D, Ruby Q. 2021. Situation des cultures et bilan de production [Cultures status and production results] L’essentiel n°106. [ accessed automn]:[ 10 p.]. http://www.crieppam.fr/
  • Gershenzon J, McCaskill D, Rajaonarivony JIM, Mihaliak C, Karp F, Croteau R. 1992. Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem. 200(1):130–138. doi:10.1016/0003-2697(92)90288-I.
  • Giorgi, F, P Lionello 2008. Climate change projections for the Mediterranean region. Glob Planet Change. 63(2–3):90–104. doi:10.1016/j.gloplacha.2007.09.005.
  • Guitton Y, Nicole F, Moja S, Valot N, Legrand S, Jullien F, Legendre L. 2010. Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. x intermedia) inflorescence development. Physiol Plant. 138(2):150–163. doi:10.1111/j.1399-3054.2009.01315.x.
  • Guo D, Kang K, Wang P, Li M, Huang X. 2020. Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender. Sci Rep. 10(1):6933. doi:10.1038/s41598-020-63950-4.
  • Herrera CM. 2001. Deconstructing a floral phenotype: do pollinators select for corolla integration in Lavandula latifolia?: corolla integration in Lavandula latifolia. J Evol Biol. 14(4):574–584. doi:10.1046/j.1420-9101.2001.00314.x.
  • Iriti M, Colnaghi G, Chemat F, Smadja J, Faoro F, Visinoni FA. 2006. Histo-cytochemistry and scanning electron microscopy of lavender glandular trichomes following conventional and microwave-assisted hydrodistillation of essential oils: a comparative study. Flavour Fragr J. 21(4):704–712. doi:10.1002/ffj.1692.
  • Jullien F, Moja S, Bony A, Legrand S, Petit C, Benabdelkader T, Poirot K, Fiorucci S, Guitton Y, Nicolè F, et al. 2014. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. Plant Mol Biol. 84(1–2):227–241. doi:10.1007/s11103-013-0131-3.
  • Karunanithi PS, Zerbe P. 2019. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front Plant Sci. 10:1166. doi:10.3389/fpls.2019.01166.
  • Keasar T, Pollak G, Arnon R, Cohen D, Shmida A. 2006. Honesty of signaling and pollinator attraction: the case of flag-like bracts. Isr J Plant Sci. 54(2):119–128. doi:10.1560/IJPS_54_2_119.
  • Lane A, Boecklemann A, Woronuk GN, Sarker L, Mahmoud SS. 2010. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta. 231(4):835–845. doi:10.1007/s00425-009-1090-4.
  • Lichtenthaler HK, Rohmer M, Schwender J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant. 101(3):643–652. doi:10.1111/j.1399-3054.1997.tb01049.x.
  • Li H, Li J, Dong Y, Hao H, Ling Z, Bai H, Wang H, Cui H, Shi L. 2019. Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC Plant Biol. 19(1):313. doi:10.1186/s12870-019-1908-6.
  • Ling Z, Li J, Dong Y, Zhang W, Bai H, Li S, Wang S, Li H, Shi L. 2022 Jun 30. Gene co-expression modulating terpene metabolism is associated with plant anti-herbivore defence during initial flowering stages. [Internet]. [accessed].
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25(4):402–408. doi:10.1006/meth.2001.1262.
  • Li J, Wang Y, Dong Y, Zhang W, Wang D, Bai H, Li K, Li H, Shi L. 2021. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Hortic Res. 8:53. doi:10.1038/s41438-021-00490-6.
  • Lukas K, Harig T, Schulz S, Hadersdorfer J, Dötterl S. 2019. Flowers of European pear release common and uncommon volatiles that can be detected by honey bee pollinators. Chemoecology. 29(5–6):211–223. doi:10.1007/s00049-019-00289-x.
  • Malli RPN, Adal AM, Sarker LS, Liang P, Mahmoud SS. 2019. De novo sequencing of the Lavandula angustifolia genome reveals highly duplicated and optimized features for essential oil production. Planta. 249(1):251–256. doi:10.1007/s00425-018-3012-9.
  • Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S. 2012. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot. 63(7):2809–2823. doi:10.1093/jxb/err466.
  • Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Arrillaga I, Eisenreich W. 2017. Dynamics of monoterpene formation in spike lavender plants. Metabolites. 7(4):65. doi:10.3390/metabo7040065.
  • Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Eisenreich W, Arrillaga I. 2015. Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiol Biochem. 95:113–120. doi:10.1016/j.plaphy.2015.07.029.
  • Moja S, Guitton Y, Nicolè F, Legendre L, Pasquier B, Upson T, Jullien F. 2016. Genome size and plastid trnK-matK markers give new insights into the evolutionary history of the genus Lavandula L. Plant Biosyst - An International Journal Dealing with all Aspects of Plant Biology. 150(6):1216–1224. doi:10.1080/11263504.2015.1014006.
  • Müller WE, Sillani G, Schuwald A, Friedland K. 2021. Pharmacological basis of the anxiolytic and antidepressant properties of Silexan®, an essential oil from the flowers of lavender. Neurochem Int. 143:104899. doi:10.1016/j.neuint.2020.104899.
  • Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J. 2006. Up-regulation of 1-deoxy- d -xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol. 142(3):890–900. doi:10.1104/pp.106.086355.
  • Muñoz-Bertomeu J, Sales E, Ros R, Arrillaga I, Segura J. 2007. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotechnol J. 5(6):746–758. doi:10.1111/j.1467-7652.2007.00286.x.
  • Ormeño E, Mévy JP, Vila B, Bousquet-Mélou A, Greff S, Bonin G, Fernandez C. 2007. Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere. 67(2):276–284. doi:10.1016/j.chemosphere.2006.10.029.
  • Passalacqua NG, Tundis R, Upson TM. 2017. A new species of Lavandula sect. Lavandula (Lamiaceae) and review of species boundaries in Lavandula angustifolia. Phytotaxa. 292(2):161. doi:10.11646/phytotaxa.292.2.3.
  • Polade, SD, DW Pierce, DR Cayan, A Gershunov, MD Dettinger 2014. The key role of dry days in changing regional climate and precipitation regimes. Sci Rep. 4(1):4364. doi:10.1038/srep04364.
  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. 1993. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 295(2):517–524. doi:10.1042/bj2950517.
  • Sarker LS, Demissie ZA, Mahmoud SS. 2013. Cloning of a sesquiterpene synthase from Lavandula x intermedia glandular trichomes. Planta. 238(5):983–989. doi:10.1007/s00425-013-1937-6.
  • Sarker LS, Galata M, Demissie ZA, Mahmoud SS. 2012. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia. Arch Biochem Biophys. 528(2):163–170. doi:10.1016/j.abb.2012.09.013.
  • Sarker LS, Mahmoud SS. 2015. Cloning and functional characterization of two monoterpene acetyltransferases from glandular trichomes of L. x intermedia. Planta. 242(3):709–719. doi:10.1007/s00425-015-2325-1.
  • Saunier A, Ormeño E, Moja S, Fernandez C, Robert E, Dupouyet S, Despinasse Y, Baudino S, Nicolè F, Bousquet-Mélou A. 2022. Lavender sensitivity to water stress: comparison between eleven varieties across two phenological stages. Ind Crops Prod. 177:114531. doi:10.1016/j.indcrop.2022.114531.
  • Schuwald AM, Nöldner M, Wilmes T, Klugbauer N, Leuner K, Müller WE. 2013. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels. Skoulakis EMC, editor. Plos One. 8(4):e59998. doi:10.1371/journal.pone.0059998.
  • Schweitzer L. 2021. Medicinal VOCs in plants recommended for prairie strips and pollinator gardens as prophylactic and curative support for pollinating insects: a review. AG. [Internet]. accessed.(Of). doi:10.18805/ag.R-157.
  • Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M. 2011. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta. 234(5):903–914. doi:10.1007/s00425-011-1444-6.
  • Stierlin É, Nicolè F, Costes T, Fernandez X, Michel T. 2020. Metabolomic study of volatile compounds emitted by lavender grown under open-field conditions: a potential approach to investigate the yellow decline disease. Metabolomics. 16(3):31. doi:10.1007/s11306-020-01654-6.
  • Trapp SC, Croteau RB. 2001. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics. 158(2):811–832. doi:10.1093/genetics/158.2.811.
  • Upson T. 1997. Systematic of the genus Lavandula L. ( Lamiaceae). University of Reading - Umpublished.
  • Upson T, Andrews S. 2004. The genus Lavandula. Kew: Royal botanic gardens.
  • Wang H, Nagegowda DA, Rawat R, Bouvier-Navé P, Guo D, Bach TJ, Chye M-L. 2012. Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis up-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance: HMGS-OEs overaccumulate sterols. Plant Biotechnol J. 10(1):31–42. doi:10.1111/j.1467-7652.2011.00631.x.
  • Wells R, Truong F, Adal AM, Sarker LS, Mahmoud SS. 2018. Lavandula essential oils: a current review of applications in medicinal, food, and cosmetic industries of lavender. Nat Prod Commun. 13(10):1934578X1801301. doi:10.1177/1934578X1801301038.
  • Zhou F, Pichersky E. 2020a. More is better: the diversity of terpene metabolism in plants. Curr Opin Plant Biol. 55:1–10. doi:10.1016/j.pbi.2020.01.005.
  • Zhou F, Pichersky E. 2020b. The complete functional characterisation of the terpene synthase family in tomato. New Phytol. 226(5):1341–1360. doi:10.1111/nph.16431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.