112
Views
0
CrossRef citations to date
0
Altmetric
Methodological developments

Part 1: methods to analyse photosynthesis as the main process affecting crop productivity

ORCID Icon
Pages 652-666 | Received 09 Dec 2022, Accepted 04 Apr 2023, Published online: 18 Apr 2023

References

  • Ahn, TK, TJ Avenson, G Peers, Z Li, L Dall’osto, R Bassi, GR Fleming. 2009. Investigating energy partitioning during photosynthesis using an expanded quantum yield convention. Chem Phys. 357(1–3):151–158. doi:10.1016/j.chemphys.2008.12.003.
  • Aleksandrov, V, V Krasteva, M Paunov, M Chepisheva, M Kouzmanova, HM Kalaji, V Goltsev. 2014. Deficiency of some nutrient elements in bean and maize plants analyzed by luminescent method. Bulg J Agric Sci. 20(1):24–30.
  • Alonso, L, L Gomez-Chova, J Vila-Frances, J Amoros-Lopez, L Guanter, J Calpe, J Moreno. 2008. Improved Fraunhofer line discrimination method for vegetation fluorescence quantification. IEEE Geosci Remote Sens Lett. 5(4):620–624. doi:10.1109/lgrs.2008.2001180.
  • Araus, JL, SC Kefauver, M Zaman-Allah, MS Olsen, JE Cairns. 2018. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 23(5):451–466. doi:10.1016/j.tplants.2018.02.001.
  • Aro, E-M, I Virgin, B Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1143(2):113–134. https://pubmed.ncbi.nlm.nih.gov/8318516/. doi: 10.1016/0005-2728(93)90134-2.
  • Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol. 50(1):601–639. doi:10.1146/annurev.arplant.50.1.601.
  • Baker, NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 59(1):89–113. doi:10.1146/annurev.arplant.59.032607.092759.
  • Baker, NR, E Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot. 55(403):1607–1621. doi:10.1093/jxb/erh196.
  • Bilger, W, O Björkman. 1991. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta. 184(2):226–234. doi:10.1007/bf00197951.
  • Björkman, O, B Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 170(4):489–504. doi:10.1007/bf00402983.
  • Boureima, S, A Oukarroum, M Diouf, N Cisse, P Van Damme. 2012. Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot. 81:37–43. doi:10.1016/j.envexpbot.2012.02.015.
  • Busch, FA. 2020. Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism. The Plant Journal. 101(4):919–939. doi:10.1111/tpj.14674.
  • Bussotti, F, M Pollastrini, C Cascio, R Desotgiu, G Gerosa, R Marzuoli, C Nali, G Lorenzini, E Pellegrini, MG Carucci, et al. 2011. Conclusive remarks. Reliability and comparability of chlorophyll fluorescence data from several field teams. Environ Exp Bot. 73:116–119. doi:10.1016/j.envexpbot.2010.10.023.
  • Cornic, G. 2002. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Ann Bot. 89(7):887–894. doi:10.1093/aob/mcf064.
  • Dąbrowski, P, AH Baczewska-Dąbrowska, HM Kalaji, V Goltsev, M Paunov, M Rapacz, M Wójcik-Jagła, B Pawluśkiewicz, W Bąba, M Brestic. 2019. Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. Sensors. 19(12):2736. doi:10.3390/s19122736.
  • Demmig-Adams, B, WW Adams. 2006. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol. 172(1):11–21. doi:10.1111/j.1469-8137.2006.01835.x.
  • Demmig-Adams, B, CM Cohu, O Muller, WW Adams. 2012. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res. 113(1–3):75–88. doi:10.1007/s11120-012-9761-6.
  • Duysens, LNM, HE Sweers. 1963. Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Jap Soc Plant Physiol, editor. Studies on Microalgae and Photosynthetic Bacteria. Tokyo: University Tokyo Press; p. 353–372.
  • Edwards, GE, NR Baker. 1993. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res. 37(2):89–102. doi:10.1007/bf02187468.
  • Faseela, P, AK Sinisha, M Brestič, JT Puthur. 2020. Special issue in honour of Prof. Reto J. Strasser - Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica. 58(SPECIAL ISSUE):293–300. doi:10.32615/ps.2019.147.
  • Foyer, CH, G Noctor. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling. 11(4):861–905. https://pubmed.ncbi.nlm.nih.gov/19239350/ accessed 2020 Oct 26 10.1089/ars.2008.2177.
  • Fracheboud Y. 2004. Using chlorophyll fluorescence to study photosynthesis. Presentation from the Institute of Plant Science ETH, Universitätstrasse 2, CH-8092 Zürich. Environ Sci. http://jaguar.fcav.unesp.br/download/deptos/biologia/durvalina/TEXTO-71.pdf.
  • Fracheboud Y, J Leipner. 2003. The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: DeEll JR, Toivonen PMA, editors. Practical applications of chlorophyll fluorescence in plant biology. Boston, MA: Springer; p. 125–150.
  • Frankart, C, P Eullaffroy, G Vernet. 2003. Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environ Exp Bot. 49(2):159–168. doi:10.1016/S0098-8472(02)00067-9.
  • Frankenberg, C, JB Fisher, J Worden, G Badgley, SS Saatchi, J-E Lee, GC Toon, A Butz, M Jung, A Kuze, et al. 2011. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys Res Lett. 38(17):n/a–n/a. doi:10.1029/2010GL045896.
  • Frankenberg, C, C O’Dell, J Berry, L Guanter, J Joiner, P Köhler, R Pollock, TE Taylor. 2014. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens Environ. 147:1–12. doi:10.1016/j.rse.2014.02.007.
  • Fryer, MJ, JR Andrews, K Oxborough, DA Blowers, NR Baker. 1998. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 116(2):571–580. doi:10.1104/pp.116.2.571.
  • Furutani, R, A Makino, Y Suzuki, S Wada, G Shimakawa, C Miyake. 2020. Intrinsic fluctuations in transpiration induce photorespiration to oxidize P700 in Photosystem I. Plants. 9(12):1761. doi:10.3390/plants9121761.
  • Gamon, JA, J Peñuelas, CB Field. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ. 41(1):35–44. doi:10.1016/0034-4257(92)90059-s.
  • Gao, D, C Ran, Y Zhang, X Wang, S Lu, Y Geng, L Guo, X Shao. 2022. Effect of different concentrations of foliar iron fertilizer on chlorophyll fluorescence characteristics of iron-deficient rice seedlings under saline sodic conditions. Plant Physiology and Biochemistry. 185:112–122. doi:10.1016/j.plaphy.2022.05.021.
  • Genty, B, J-M Briantais, NR Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Et Biophysica Acta (BBA) - General Subjects. 990(1):87–92. https://www.sciencedirect.com/science/article/abs/pii/S0304416589800169 accessed 2022 Oct 9 10.1016/S0304-4165(89)80016-9.
  • Gitelson, AA, GP Keydan, MN Merzlyak. 2006. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett. 33(11): doi:10.1029/2006gl026457.
  • Grabolle, M, H Dau. 2005. Energetics of primary and secondary electron transfer in photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochimica Et Biophysica Acta (BBA) - Bioenergetics. 1708(2):209–218. doi:10.1016/j.bbabio.2005.03.007.
  • Guanter, L, Y Zhang, M Jung, J Joiner, M Voigt, JA Berry, C Frankenberg, AR Huete, P Zarco-Tejada, J-E Lee, et al. 2014. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci. 111(14):E1327–1333. doi:10.1073/pnas.1320008111.
  • Guisse, B, A Srivastava, R Strasser. . The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Arch Sci. 48(2):147. doi:10.5169/SEALS-740252. accessed 2022 Dec 6. https://archive-ouverte.unige.ch/unige:120877.
  • Hanawa, H, K Ishizaki, K Nohira, D Takagi, G Shimakawa, T Sejima, K Shaku, A Makino, C Miyake. 2017. Land plants drive photorespiration as higher electron-sink: comparative study of post-illumination transient O2-uptake rates from liverworts to angiosperms through ferns and gymnosperms. Physiol Plant. 161(1):138–149. doi:10.1111/ppl.12580.
  • Harbinson, J, CL Hedley. 1989. The kinetics of P-700+ reduction in leaves: a novel in situ probe of thylakoid functioning. Plant Cell Environ. 12(4):357–369. doi:10.1111/j.1365-3040.1989.tb01952.x.
  • Hassan, IA. 2006. Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica. 44(2):312–315. doi:10.1007/s11099-006-0024-7.
  • Heber, U, D Walker. 1992. Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol. 100(4):1621–1626. doi:10.1104/pp.100.4.1621.
  • He, L, T Magney, D Dutta, Y Yin, P Köhler, K Grossmann, J Stutz, C Dold, J Hatfield, K Guan, et al. 2020. From the ground to space: using solar‐induced chlorophyll fluorescence to estimate crop productivity. Geophys Res Lett. 47(7). doi:10.1029/2020gl087474
  • Hikosaka, K, HM Noda. 2018. Modeling leaf CO2 assimilation and Photosystem II photochemistry from chlorophyll fluorescence and the photochemical reflectance index. Plant, Cell & Environment. 42(2):730–739. doi:10.1111/pce.13461.
  • Hikosaka, K, K Tsujimoto. 2021. Linking remote sensing parameters to CO2 assimilation rates at a leaf scale. J Plant Res. 134(4):695–711. doi:10.1007/s10265-021-01313-4.
  • Iwai, M, Y Takahashi, J Minagawa. 2008. Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. Plant Cell. 20(8):2177–2189. doi:10.1105/tpc.108.059352.
  • Jedmowski, C, A Ashoub, W Brüggemann. 2013. Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. Acta Physiol Plant. 35(2):345–354. doi:10.1007/s11738-012-1077-9.
  • Kaiwen, G, X Zisong, H Yuze, S Qi, W Yue, C Yanhui, W Jiechen, L Wei, Z Huihui. 2020. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signaling & Behavior. 15(12):1832373. doi:10.1080/15592324.2020.1832373.
  • Kalaji, HM, W Bąba, K Gediga, V Goltsev, IA Samborska, MD Cetner, S Dimitrova, U Piszcz, K Bielecki, K Karmowska, et al. 2017. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth Res. 136(3):329–343. doi:10.1007/s11120-017-0467-7.
  • Kalaji, HM, BK Govindjee, J Kościelniak, K Żuk-Gołaszewska, K Żuk-Gołaszewska. 2011. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot. 73:64–72. doi:10.1016/j.envexpbot.2010.10.009.
  • Kalaji, HM, A Jajoo, A Oukarroum, M Brestic, M Zivcak, IA Samborska, MD Cetner, I Łukasik, V Goltsev, RJ Ladle. 2016a. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 38(4): doi:10.1007/s11738-016-2113-y.
  • Kalaji, HM, A Oukarroum, V Alexandrov, M Kouzmanova, M Brestic, M Zivcak, IA Samborska, MD Cetner, SI Allakhverdiev, V Goltsev. 2014a. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiology and Biochemistry. 81:16–25. doi:10.1016/j.plaphy.2014.03.029.
  • Kalaji, HM, G Schansker, M Brestic, F Bussotti, A Calatayud, L Ferroni, V Goltsev, L Guidi, A Jajoo, P Li, et al. 2016b. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res. 132(1):13–66. doi:10.1007/s11120-016-0318-y.
  • Kalaji, HM, G Schansker, RJ Ladle, V Goltsev, K Bosa, SI Allakhverdiev, M Brestic, F Bussotti, A Calatayud, P Dąbrowski, et al. 2014b. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res. 122(2);121–158. accessed 2022 Oct 26. https://pubmed.ncbi.nlm.nih.gov/25119687/.
  • Kautsky, H, A Hirsch. 1931. Neue Versuche zur Kohlensaureassimilation. Die Naturwissenschaften. 19(48):964. doi:10.1007/bf01516164.
  • Kitao, M, Y Yasuda, E Kodani, H Harayama, Y Awaya, M Komatsu, K Yazaki, H Tobita, E Agathokleous. 2021. Integration of electron flow partitioning improves estimation of photosynthetic rate under various environmental conditions based on chlorophyll fluorescence. Remote Sens Environ. 254:112273. doi:10.1016/j.rse.2020.112273.
  • Klughammer, C, U Schreiber. 1991. Analysis of light-induced absorbance changes in the near-infrared spectral region I. Characterization of various components in isolated chloroplasts. Zeitschrift für Naturforschung C. 46(3–4):233–244. doi:10.1515/znc-1991-3-413.
  • Klughammer, C, U Schreiber. 2016. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynth Res. 128(2):195–214. doi:10.1007/s11120-016-0219-0.
  • Kolaksazov, M, F Laporte, V Goltsev, M Herzog, ED Ananiev. 2014. Effect of frost stress on chlorophyll a fluorescence and modulated 820 nm reflection in Arabis alpina population from Rila mountain. Genet Plant Physiol. 4(1):44–56.
  • Kopriva, S, H Rennenberg. 2004. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot. 55(404):1831–1842. https://pubmed.ncbi.nlm.nih.gov/15286142/ accessed 2022 Aug 6 10.1093/jxb/erh203.
  • Krall, JP, GE Edwards. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant. 86(1):180–187. doi:10.1111/j.1399-3054.1992.tb01328.x.
  • Krause, GH, E Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Phys. 42(1):313–349. doi:10.1146/annurev.pp.42.060191.001525.
  • Kumar, D, H Singh, S Raj, V Soni. 2020. Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochemistry and Biophysics Reports. 24:100813. doi:10.1016/j.bbrep.2020.100813.
  • Laisk, A, GE Edwards. 1998. Oxygen and electron flow in C4 photosynthesis: Mehler reaction, photorespiration and CO2 concentration in the bundle sheath. Planta. 205(4):632–645. doi:10.1007/s004250050366.
  • Lambrev, PH, M Nilkens, Y Miloslavina, P Jahns, AR Holzwarth. 2009. Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis Leaves. Plant Physiol. 152(3):1611–1624. doi:10.1104/pp.109.148213.
  • Leustek, T, MN Martin, J-A Bick, JP Davies. 2000. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol. 51(1):141–165. doi:10.1146/annurev.arplant.51.1.141.
  • Li, X. P, O Björkman, C Shih, AR Grossman, M Rosenquist, S Jansson, KK Niyogi. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 403(6768):391–395. doi:10.1038/35000131.
  • Long, SP, PK Farage, RL Garcia. 1996. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J Exp Bot. 47(11):1629–1642. doi:10.1093/jxb/47.11.1629.
  • Long S. P, A Marshall-Colon, X-G Zhu. 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell. 161(1):56–66. doi:10.1016/j.cell.2015.03.019. https://www.cell.com/action/showPdf?pii=S0092-8674%2815%2900306-2
  • Long, SP, X-G Zhu, SL Naidu, DR Ort. 2006. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29(3):315–330. http://www.esalq.usp.br/lepse/imgs/conteudo_thumb/Can-improvement-in-photosynthesis-increase-crop-yields.pdf accessed 2019 Aug 29 10.1111/j.1365-3040.2005.01493.x.
  • Lootens, P, T Ruttink, A Rohde, D Combes, P Barre, I Roldán-Ruiz. 2016. High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis. Plant Methods. 12(1): doi:10.1186/s13007-016-0132-8.
  • Magney, TS, ML Barnes, X Yang. 2020. On the Covariation of Chlorophyll Fluorescence and Photosynthesis Across Scales. Geophys Res Lett. 47(23): doi:10.1029/2020gl091098.
  • Maxwell, DP, S Falk, CG Trick, NPA Huner. 1994. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 105(2):535–543. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC159391/ accessed 2019 Jun 10 10.1104/pp.105.2.535.
  • Maxwell, K, GN Johnson. 2000. Chlorophyll fluorescence—a practical guide. J Exp Bot. 51(345):659–668. doi:10.1093/jexbot/51.345.659.
  • McAusland, L, JA Atkinson, T Lawson, EH Murchie. 2019. High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions. Plant Methods. 15(1): doi:10.1186/s13007-019-0485-x.
  • Mehler, AH. 1951. Studies on reactions of illuminated chloroplasts: i. Mechanism of the reduction of oxygen and other hill reagents. Arch Biochem Biophys. 33(1):65–77. doi:10.1016/0003-9861(51)90082-3.
  • Mishra, A, KB Mishra, II Höermiller, AG Heyer, L Nedbal. 2011. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signaling & Behavior. 6(2):301–310. doi:10.4161/psb.6.2.15278.
  • Mohammed, GH, R Colombo, EM Middleton, U Rascher, C van der Tol, L Nedbal, Y Goulas, O Pérez-Priego, A Damm, M Meroni, et al. 2019. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens Environ. 231:111177. doi:10.1016/j.rse.2019.04.030.
  • Morosinotto, T, R Baronio, R Bassi. 2002. Dynamics of chromophore binding to lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. J Biol Chem. 277(40):36913–36920. doi:10.1074/jbc.m205339200.
  • Müller, P, XP Li, KK Niyogi. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125(4):1558–1566. doi:10.1104/pp.125.4.1558.
  • Murchie, EH, T Lawson. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 64(13):3983–3998. doi:10.1093/jxb/ert208.
  • Neyra, CA, RH Hageman. 1974. Dependence of nitrite reduction on electron transport chloroplasts. Plant Physiol. 54(4):480–483. doi:10.1104/pp.54.4.480.
  • Nilkens, M, E Kress, P Lambrev, Y Miloslavina, M Müller, AR Holzwarth, P Jahns. 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1797(4):466–475. doi:10.1016/j.bbabio.2010.01.001.
  • Nishiyama, Y, SI Allakhverdiev, N Murata. 2006. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1757(7):742–749. doi:10.1016/j.bbabio.2006.05.013.
  • Niyogi, KK, AR Grossman, O Björkman. 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell. 10(7):1121–1134. doi:10.1105/tpc.10.7.1121.
  • Nowicka, B, J Ciura, R Szymańska, J Kruk. 2018. Improving photosynthesis, plant productivity and abiotic stress tolerance – current trends and future perspectives. J Plant Physiol. 231:415–433. doi:10.1016/j.jplph.2018.10.022.
  • Oja, V, I Bichele, K Hüve, B Rasulov, A Laisk. 2004. Reductive titration of photosystem I and differential extinction coefficient of P700+ at 810–950 nm in leaves. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1658(3):225–234. doi:10.1016/j.bbabio.2004.06.006.
  • Oja, V, H Eichelmann, RB Peterson, B Rasulov, A Laisk. 2003. Deciphering the 820 nm signal: redox state of donor side and quantum yield of Photosystem I in leaves. Photosynth Res. 78(1):1–15. doi:10.1023/A:1026070612022.
  • Oukarroum, A, S El Madidi, G Schansker, RJ Strasser. 2007. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot. 60(3):438–446. doi:10.1016/j.envexpbot.2007.01.002.
  • Paul V, R Pandey, A Anand, K. V Ramesh. 2017. Measurement of plant respiration by infrared gas analyser (IRGA). In: (compiled by) V Paul, R Pandey, and M Pal, editors. Manual of ICAR Sponsored Training Programme for Technical Staff of ICAR Institutes on “Physiological Techniques to Analyze the Impact of Climate Change on Crop Plants.“ New Delhi: Division of Plant Physiology, IARI; p. 31–34. Researchgate: https://www.researchgate.net/profile/Vijay-Paul-2/publication/321274422_Physiological_Techniques_to_Analyze_the_Impact_of_Climate_Change_on_Crop_Plants/links/5a181f9e4585155c26a7c6ed/Physiological-Techniques-to-Analyze-the-Impact-of-Climate-Change-on-Crop-Plants.pdf
  • Pérez-Bueno, ML, M Pineda, M Barón. 2019. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front Plant Sci. 10:10. doi:10.3389/fpls.2019.01135.
  • Peterson, RB, EA Havir. 2004. The multiphasic nature of nonphotochemical quenching: implications for assessment of photosynthetic electron transport based on chlorophyll fluorescence. Photosynth Res. 82(1):95–107. doi:10.1023/b:pres.0000040477.43858.54.
  • Pettorelli, N, JO Vik, A Mysterud, J-M Gaillard, CJ Tucker, S NChr. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution. 20(9):503–510. doi:10.1016/j.tree.2005.05.011.
  • Pfündel, EE, C Klughammer, A Meister, ZG Cerovic. 2013. Deriving fluorometer-specific values of relative PSI fluorescence intensity from quenching of F0 fluorescence in leaves of Arabidopsis thaliana and Zea mays. Photosynth Res. 114(3):189–206. doi:10.1007/s11120-012-9788-8.
  • Plett, DC, K Ranathunge, VJ Melino, N Kuya, Y Uga, HJ Kronzucker, G Xu. 2020. The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. J Exp Bot. 71(15):4452–4468. doi:10.1093/jxb/eraa049.
  • Prasil, O, N Adir, I Ohad. 1992. Dynamics of photosystem II: mechanism of photoinhibition and recovery process. 11. 295–348 accessed 2022 Dec 6 https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5209830
  • Raghavendra, AS, K Padmasree. 2003. Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci. 8(11):546–553. doi:10.1016/j.tplants.2003.09.015.
  • Ralph, PJ, C Wilhelm, J Lavaud, T Jakob, K Petrou, SA Kranz. 2010. Fluorescence as a tool to understand changes in photosynthetic electron flow regulation. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. 75–89. doi:10.1007/978-90-481-9268-7_4.
  • Rastogi, A, M Kovar, X He, M Zivcak, S Katarina, HM Kalaji, M Skalicki, UF Ibrahimova, S Hussain, S Mbarki, et al. 2020. Special issue in honour of Prof. Reto J. Strasser - JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. Photosynthetica. 58(SPECIAL ISSUE):518–528. doi:10.32615/ps.2019.169.
  • Rintamaki, E, R Salo, E Lehtonen, E-M Aro. . Regulation of D1-protein degradation during photoinhibition of photosystem II in vivo: phosphorylation of the D1 protein in various plant groups. Planta. 195(3): doi:10.1007/bf00202595.
  • Rosenqvist, E, O van Kooten. 2003. Chlorophyll fluorescence: a general description and nomenclature. Practical Applications of Chlorophyll Fluorescence in Plant Biology. 31–77. doi:10.1007/978-1-4615-0415-3_2.
  • Ruban, AV. 2017. Quantifying the efficiency of photoprotection. Phil Trans R Soc B: Biol Sci. 372(1730):20160393. doi:10.1098/rstb.2016.0393.
  • Schansker, G, A Srivastava, RJ Strasser, RJ Strasser. 2003. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. FunctPlant Biol. 30(7):785–796. doi:10.1071/FP03032.
  • Schansker, G, SZ Tóth, RJ Strasser. 2005. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1706(3):250–261. doi:10.1016/j.bbabio.2004.11.006.
  • Schreiber, U. 2017. Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynth Res. 134(3):343–360. doi:10.1007/s11120-017-0394-7.
  • Schreiber, U, C Klughammer, J Kolbowski. 2012. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res. 113(1–3):127–144. doi:10.1007/s11120-012-9758-1.
  • Schreiber, U, U Schliwa, W Bilger. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 10(1–2):51–62. doi:10.1007/bf00024185.
  • Skillman, JB, K Winter. 1997. High photosynthetic capacity in a shade-tolerant crassulacean acid metabolism plant (implications for sunfleck use, nonphotochemical energy dissipation, and susceptibility to photoinhibition). Plant Physiol. 113(2):441–450. doi:10.1104/pp.113.2.441.
  • Stirbet, A, Govindjee, 2011. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B. 104(1–2):236–257. doi:10.1016/j.jphotobiol.2010.12.010.
  • Strasser, RJ. 1978. The grouping model of plant photosynthesis.“Chloroplast development”. Akoyunoglou G, Argyroudi-Akoyunoglou J editors. Amsterdam, The Netherlands: Elsevier: North Holland Biomedical Press.
  • Strasser, RJ. 1981. The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids. Photosynthesis III Structure and molecular organisation of the photosynthetic apparatus:727–737.
  • Strasser, RJ, M Tsimilli-Michael, A Srivastava. 2004. Analysis of the Chlorophyll a Fluorescence Transient. Chlorophyll a Fluorescence. 19:321–362. doi:10.1007/978-1-4020-3218-9_12.
  • Strehler, BL, W Arnold. 1951. Light production by green plants. J Gen Physiol. 34(6):809. doi:10.1085/jgp.34.6.809.
  • Sun, D, Y Zhu, H Xu, Y He, H Cen. 2019. Time-series chlorophyll fluorescence imaging reveals dynamic photosynthetic fingerprints of sos mutants to drought stress. Sensors. 19(12):2649. doi:10.3390/s19122649.
  • Tardieu, F, L Cabrera-Bosquet, T Pridmore, M Bennett. 2017. Plant phenomics, from sensors to knowledge. Current Biology. 27(15):R770–783. doi:10.1016/j.cub.2017.05.055.
  • Tezara, W. 2003. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann Bot. 92(6):757–765. doi:10.1093/aob/mcg199.
  • Tietz, S, CC Hall, JA Cruz, DM Kramer. 2017. NPQ (T) a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant, Cell & Environment. 40(8):1243–1255. doi:10.1111/pce.12924.
  • Tyystjarvi, E, EM Aro. 1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci. 93(5):2213–2218. doi:10.1073/pnas.93.5.2213.
  • van Bezouw, RF, JJ Keurentjes, J Harbinson, MG Aarts. 2019. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. The Plant Journal. 97(1):112–133. doi:10.1111/tpj.14190.
  • van Heerden, PDR, JW Swanepoel, GHJ Krüger. 2007. Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environ Exp Bot. 61(2):124–136. doi:10.1016/j.envexpbot.2007.05.005.
  • van Wijk, KJ, GH Krause. 1991. Oxygen dependence of photoinhibition at low temperature in intact protoplasts of Valerianella locusta L. Planta. 186(1):135–142. doi:10.1007/bf00201509.
  • Vass, I. 2019 Mar. The Role of Singlet Oxygen in Photoinhibition of Photosystem II. Oxygen Production and Reduction in Artificial and Natural Systems. 91–118. 10.1142/9789813276925_0005
  • Walter, A, F Liebisch, A Hund. 2015. Plant phenotyping: from bean weighing to image analysis. Plant Methods. 11(1):14. doi:10.1186/s13007-015-0056-8.
  • Wong, CYS, JA Gamon. 2014. Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers. New Phytol. 206(1):187–195. doi:10.1111/nph.13159.
  • Yang, S, D-Y Meng, L-L Hou, Y Li, F Guo, J-J Meng, S-B Wan, X-G Li. 2015. Peanut violaxanthin de-epoxidase alleviates the sensitivity of PSII photoinhibition to heat and high irradiance stress in transgenic tobacco. Plant Cell Rep. 34(8):1417–1428. doi:10.1007/s00299-015-1797-6.
  • Yan, Z, T Ma, S Guo, R Liu, M Li. 2021. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Sci Hortic (Amsterdam). 280:109933. doi:10.1016/j.scienta.2021.109933.
  • Ye, ZP, YG Liu, HJ Kang, HL Duan, XM Chen, SX Zhou. 2019. Comparing two measures of leaf photorespiration rate across a wide range of light intensities. J Plant Physiol. 240:153002.
  • Yoshida, K, I Terashima, K Noguchi. 2007. Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiol. 48(4):606–614. doi:10.1093/pcp/pcm033.
  • Zhan, W, X Yang, Y Ryu, B Dechant, Y Huang, Y Goulas, M Kang, P Gentine. 2022. Two for one: partitioning CO2 fluxes and understanding the relationship between solar-induced chlorophyll fluorescence and gross primary productivity using machine learning. Agric Meteorol. 321:108980. doi:10.1016/j.agrformet.2022.108980.
  • Živčák, M, M Brestič, K Olšovská, P Slamka. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 54(4):133–139. doi:10.17221/392-PSE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.