69
Views
0
CrossRef citations to date
0
Altmetric
Physiology, anatomy, morphology

Scaling relationships between leaf petiole and lamina size of two Photinia species

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 150-158 | Received 08 Apr 2023, Accepted 03 Oct 2023, Published online: 15 Oct 2023

References

  • Aasamaa K, Niinemets U, Sõber A. 2005. Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny. Tree Physiol. 25(11):1409–1418. doi: 10.1093/treephys/25.11.1409.
  • Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia. 130(3):449–457. doi: 10.1007/s004420100805.
  • Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, Scoffoni C, Edwards EJ, Christin PA, Osborne CP, et al. 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature. 592(7853):242–247. doi: 10.1038/s41586-021-03370-0.
  • Bloom AJ, Chapin FS, Mooney HA. 1985. Resource limitation in plants−an economic analogy. Annu Rev Ecol Syst. 16(1):363–392. doi: 10.1146/annurev.es.16.110185.002051.
  • Bragg JG, Westoby M. 2002. Leaf size and foraging for light in a sclerophyll woodland. Funct Ecol. 16(5):633–639. doi: 10.1046/j.1365-2435.2002.00661.x.
  • Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144(4):1890–1898. doi: 10.1104/pp.107.101352.
  • Efron B, Tibshirani RJ. 1993. An introduction to the bootstrap. London: Chapman and Hall doi: 10.1201/9780429246593.
  • Jiao Y, Niklas KJ, Wang L, Yu K, Li Y, Shi P. 2022. Influence of leaf age on the scaling relationships of lamina mass vs. area. Front Plant Sci. 13:860206. doi: 10.3389/fpls.2022.860206.
  • Ji M, Jin G, Liu Z. 2021. Effects of ontogenetic stage and leaf age on leaf functional traits and the relationships between traits in Pinus koraiensis. J For Res. 32(6):2459–2471. doi: 10.1007/s11676-021-01308-w.
  • Kaneko Y, Homma K. 2006. Differences in the allocation patterns between liana and shrub Hydrangea species. Plant Spec Biol. 21(3):147–153. doi: 10.1111/j.1442-1984.2006.00160.x.
  • Li Y, Shi P, Niinemets Ü, Song Y, Yu K, Schrader J, Niklas KJ. 2022. Diminishing returns among lamina fresh and dry mass, surface area, and petiole fresh mass among nine Lauraceae species. Am J Bot. 109(3):377–392. doi: 10.1002/ajb2.1812.
  • Li G, Yang D, Sun S. 2008. Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Funct Ecol. 22(4):557–564. doi: 10.1111/j.1365-2435.2008.01407.x.
  • Lusk CH. 2019. Leaf functional trait variation in a humid temperate forest, and relationships with juvenile tree light requirements. Peer J. 7:e6855. doi: 10.7717/peerj.6855.
  • Lusk CH, Clearwater MJ, Laughlin DC, Harrison SP, Prentice IC, Nordenstahl M, Smith B. 2018. Frost and leaf-size gradients in forests: global patterns and experimental evidence. New Phytol. 219(2):565–573. doi: 10.1111/nph.15202.
  • Lusk CH, Grierson ERP, Laughlin DC. 2019. Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytol. 223(3):1319–1327. doi: 10.1111/nph.15849.
  • McElwain JC, Yiotis C, Lawson T. 2016. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol. 209(1):94–103. doi: 10.1111/nph.13579.
  • Milla R, Reich PB. 2007. The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proc Roy Soc Biol Sci. 274(1622):2109–2114. doi: 10.1098/rspb.2007.0417.
  • Moles AT, Westoby M. 2000. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos. 90(3):517–524. doi: 10.1034/J.1600-0706.2000.900310.X.
  • Navarro T, El Oualidi J, Taleb MS, Pascual V, Cabezudo B, Milla R. 2010. Leaf patterns, leaf size and ecologically related traits in high Mediterranean mountain on the Moroccan High Atlas. Plant Ecol. 210(2):275–290. doi: 10.1007/s11258-010-9756-3.
  • Niinemets Ü, Kull O. 1999. Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiol. 19(6):349–358. doi: 10.1093/treephys/19.6.349.
  • Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F. 2007. Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann Bot. 100(2):283–303. doi: 10.1093/aob/mcm107.
  • Niinemets Ü, Portsmuth A, Tobias M. 2006. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytol. 171(1):91–104. doi: 10.1111/j.1469-8137.2006.01741.x.
  • Niinemets Ü, Portsmuth A, Tobias M. 2007. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Funct Ecol. 21(1):28–40. doi: 10.1111/j.1365-2435.2006.01221.x.
  • Niklas KJ. 1991. The elastic moduli and mechanics of Populus tremuloides (Salicaceae) petioles in bending and torsion. Am J Bot. 78(7):989–996. doi: 10.1002/j.1537-2197.1991.tb14503.x.
  • Niklas KJ. 1992. Petiole mechanics, light interception by lamina, and economy in design. Oecologia. 90(4):518–526. doi: 10.1007/BF01875445.
  • Niklas KJ. 1993. Testing “economy in design” in plants: are the petioles and rachises of leaves “designed” according to the principle of uniform strength? Ann Bot. 71(1):33–41. doi: 10.1006/anbo.1993.1004.
  • Niklas KJ. 1994. Plant allometry: the scaling of form and process. Chicago: University of Chicago Press.
  • Niklas KJ. 1998. Effects of vibration on mechanical properties and biomass allocation pattern of Capsella bursa-pastoris (Cruciferae). Ann Bot. 82(2):147–156. doi: 10.1006/anbo.1998.0658.
  • Niklas KJ. 1999. A mechanical perspective on foliage leaf form and function. New Phytol. 143(1):19–31. doi: 10.1046/j.1469-8137.1999.00441.x.
  • Niklas KJ, Enquist BJ. 2002. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. Am Nat. 159(5):482–497. doi: 10.1086/339459.
  • Parkhurst DF, Duncan PR, Gates DM, Kreith F. 1968. Wind-tunnel modelling of convection of heat between air and broad leaves of plants. Agric Meteorol. 5(1):33–47. doi: 10.1016/0002-1571(68)90021-6.
  • Parkhurst DF, Loucks OL. 1972. Optimal leaf size in relation to environment. J Ecol. 60(2):505–537. doi: 10.2307/2258359.
  • Pearcy RW, Muraoka H, Valladares F. 2005. Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol. 166(3):791–800. doi: 10.1111/j.1469-8137.2005.01328.x.
  • Pearcy RW, Yang W. 1998. The functional morphology of light capture and carbon gain in the redwood forest understorey plant Adenocaulon bicolor Hook. Funct Ecol. 12(4):543–552. doi: 10.1046/j.1365-2435.1998.00234.x.
  • Pickup M, Westoby M, Basden A. 2005. Dry mass costs of deploying leaf area in relation to leaf size. Funct Ecol. 19(1):88–97. doi: 10.1111/j.0269-8463.2005.00927.x.
  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193(1):30–50. doi: 10.1111/j.1469-8137.2011.03952.x.
  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna (Australia): R Foundation for Statistical Computing; [accessed 2022 Jun 1]. https://www.r-project.org/.
  • Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198(4):983–1000. doi: 10.1111/nph.12253.
  • Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun. 3:837. doi: 10.1038/ncomms1835.
  • Sandhu HS, Shi P, Kuang X, Xue F, Ge F. 2011. Applications of the bootstrap to insect physiology. Fla Entomol. 94(4):1036–1041. doi: 10.1653/024.094.0442.
  • Shi P, Gielis J, Quinn BK, Niklas KJ, Ratkowsky DA, Schrader J, Ruan H, Wang L, Niinemets Ü. 2022a. ‘biogeom’: an R package for simulating and fitting natural shapes. Ann N Y Acad Sci. 1516(1):123–134. doi: 10.1111/nyas.14862.
  • Shi P, Miao Q, Niinemets Ü, Liu M, Li Y, Yu K, Niklas KJ. 2022b. Scaling relationships of leaf vein and areole traits versus leaf size for nine Magnoliaceae species differing in venation density. Am J Bot. 109(6):899–909. doi: 10.1002/ajb2.1856.
  • Shi P, Ratkowsky DA, Li Y, Zhang L, Lin S, Gielis J. 2018. A general leaf area geometric formula exists for plants—evidence from the simplified Gielis equation. Forests. 9(11):714. doi: 10.3390/f9110714.
  • Su J, Niklas KJ, Huang W, Yu X, Yang Y, Shi P. 2019. Lamina shape does not correlate with lamina surface area: an analysis based on the simplified Gielis equation. Global Ecol Conserv. 19:e00666. doi: 10.1016/j.gecco.2019.e00666.
  • Takenaka A. 1994. Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol Res. 9(2):109–114. doi: 10.1007/BF02347485.
  • Thornley JHM. 1972. A balanced quantitative model for root: shoot ratios in vegetative plants. Ann Bot. 36(2):431–441. doi: 10.1093/oxfordjournals.aob.a084602.
  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Evol Syst. 33(1):125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452.
  • Westoby M, Wright IJ. 2003. The leaf size−twig size spectrum and its relationship to other important spectra of variation among species. Oecologia. 135(4):621–628. doi: 10.1007/s00442-003-1231-6.
  • Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA et al. 2017. Global climatic drivers of leaf size. Science. 357(6354):917–921. doi: 10.1126/science.aal4760.
  • Zheng X, Niklas KJ, Ratkowsky DA, Jiao Y, Ding H, Shi P. 2022. Comparison of leaf shape between a Photinia hybrid and one of its parents. Plants. 11(18):2370. doi: 10.3390/plants11182370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.