50
Views
0
CrossRef citations to date
0
Altmetric
Palaeobotany & archaeobotany

First megafossil occurrence of Cryosophileae (Arecaceae) in Asia: anatomy, systematics, and biogeography

&
Pages 181-193 | Received 29 Jul 2023, Accepted 04 Dec 2023, Published online: 14 Dec 2023

References

  • Asmussen CB, Chase MW. 2001. Coding and noncoding plastid DNA in palm systematics. Am J Bot. 88(6):1103–1117. doi: 10.2307/2657094.
  • Asmussen CB, Dransfield J, Deickmann V, Barfod AS, Pintaud JC, Baker WJ. 2006. A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot J Linn Soc. 151(1):15–38. doi: 10.1111/j.1095-8339.2006.00521.x.
  • Baas P, Manchester SR, Wheeler EA, Srivastava R. 2017. Fossil wood with dimorphic fibers from the Deccan Intertrappean beds of India – the oldest fossil connaraceae? IAWA J. 38(1):124–133. doi: 10.1163/22941932-20170162.
  • Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. 2015. Biological evidence supports an early and complex emergence of the isthmus of Panama. Proc Natl Acad Sci. 112(19):6110–6115. doi: 10.1073/pnas.1423853112.
  • Baker WJ, Dransfield J. 2016. Beyond genera palmarum: progress and prospects in palm systematics. Bot J Linn Soc. 182(2):207–233. doi: 10.1111/boj.12401.
  • Berry EW. 1914. The upper cretaceous and Eocene floras, of South Carolina and Georgia. US Geol Surv Prof Pap. 84:1–200.
  • Berry EW. 1924. The middle and upper Eocene floras of southeastern North America. US Geol Surv Prof Pap. 92:1–206.
  • Bhatia H, Khan MA, Srivastava G, Hazra T, Spicer RA, Hazra M, Mehrotra RC, Spicer TE, Bera S, Roy K. 2021. Late Cretaceous–Paleogene Indian monsoon climate vis-à-vis movement of the Indian plate, and the birth of the South Asian monsoon. Gondwana Res. 93:89–100. doi: 10.1016/j.gr.2021.01.010.
  • Bonde SD. 2008. Indian fossil monocotyledons: current status, recent developments and future directions. JPS. 57(1–3):141–164. doi: 10.54991/jop.2008.233.
  • Breña-Ochoa A, Cevallos-Ferriz SR. 2021. Organ reconstruction and systematic relationships of Late Cretaceous palm stems and roots. J Syst Palaeontol. 19(7):519–539. doi: 10.1080/14772019.2021.1938263.
  • Chenet AL, Courtillot V, Fluteau F, Gérard M, Quidelleur X, Khadri SFR, Subbarao KV, Thordarson T. 2009. Determination of rapid Deccan eruptions across the Cretaceous‐Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500‐m‐thick composite section. J Geophys Res Solid Earth. 114(B6): doi: 10.1029/2008JB005644.
  • Chenet AL, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K–40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett. 263(1–2):1–15. doi: 10.1016/j.epsl.2007.07.011.
  • Cody S, Richardson JE, Rull V, Ellis C, Pennington RT. 2010. The great American biotic interchange revisited. Ecography. 33(2):326–332. doi: 10.1111/j.1600-0587.2010.06327.x.
  • Couvreur TL, Forest F, Baker WJ. 2011. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol. 9(1):44.
  • Daghlian CP. 1978. Coryphoid palms from the lower and middle Eocen of Southeastern North America. Palaeontographica Abteilung B, Paläophytologie. 166(1–3):44–82.
  • Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE. 2008. Genera palmarum: the evolution and classification of palms. Richmond, Surrey, TW9 3AB, UK: Royal Botanic Gardens. Kew, Kew Publishing.
  • Franco MJ, Brea M, Herbst R. 2014. Palmoxylon romeroi sp. nov., de la Formación Chiquimil (Mioceno Superior) del valle de Santa María, provincia de Catamarca, Argentina. Ameghiniana. 51(6):572–584. doi: 10.5710/AMGH.15.09.2014.2811.
  • Ghoshmaulik S, Bhattacharya SK, Hazra M, Roy P, Khan MA, Liang MC, Iizuka Y, Hsiao SY, Lee DC, Sarkar A. 2023. Triple oxygen isotopes in intertrappean fossil woods: evidence of higher tropical rainfall during Deccan volcanism. Chem Geol. 634:121599. doi: 10.1016/j.chemgeo.2023.121599.
  • Hahn WJ, Lockhart P. 2002. A molecular phylogenetic study of the palmae (Arecaceae) based on atp B, rbc L, and 18S nrDNA sequences. Syst Biol. 51(1):92–112. doi: 10.1080/106351502753475899.
  • Hass H, Rowe NP. 1999. Thin sections and wafering. In Jones TP Rowe TP editors Fossil plants and spores: modern Techniques. Geol Soc. London; pp. 76–81.
  • Hofmann C, Feraud V Courtillot G, Courtillot V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth Planet Sci Lett. 180(1–2):13–27. doi: 10.1016/S0012-821X(00)00159-X.
  • Jacques FMB, Su T, Spicer RA, Xing YW, Huang YJ, Zhou ZK. 2014. Late miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol. 411:208–215. doi: 10.1016/j.palaeo.2014.05.041.
  • Khan MA, Hazra M, Mahato S, Spicer RA, Roy K, Hazra T, Bandopadhaya M, Spicer TE, Bera S. 2020a. A Cretaceous Gondwana origin of the wax palm subfamily (Ceroxyloideae: arecaceae) and its paleobiogeographic context. Rev Palaeobot Palynol. 283:104318. doi: 10.1016/j.revpalbo.2020.104318.
  • Khan MA, Mandal K, Bera S. 2019. A new species of permineralized palm stem from the Maastrichtian–Danian sediments of central India and its palaeoclimatic signal. Bot Lett. 166(2):189–206. doi: 10.1080/23818107.2019.1600166.
  • Khan MA, Roy K, Hazra T, Mahato S, Bera S. 2020b. A new coryphoid palm from the Maastrichtian-Danian sediments of Madhya Pradesh and its palaeoenvironmental implications. J Geol Soc India. 95(1):75–83. doi: 10.1007/s12594-020-1388-1.
  • Kumar S, Hazra T, Spicer RA, Hazra M, Spicer TE, Bera S, Khan MA. 2023. Coryphoid palms from the K-Pg boundary of Central India and their biogeographical implications: evidence from megafossil remains. Plant Divers. 45(1):80–97. doi: 10.1016/j.pld.2022.01.001.
  • Kumar S, Manchester SR, Hazra T, Khan MA. 2022. A review of palm macrofossils from India and perspectives. Arab J Geosci. 15(23):1720. doi: 10.1007/s12517-022-10989-4.
  • Lakhanpal RN, Sah SCD, Sharma KK, and Guleria JS. 1983. Occurrence of Livistona in the hemis conglomerate horizon of Ladakh. In: VC Thakur, KK Sharma, editors. Geology of indus suture zone of Ladakh. Wadia Institute of Himalayan Geology, Dehradun; pp. 179–185.
  • Manchester SR. 1987. Extinct ulmaceous fruits from the tertiary of Europe and western North America. Rev Palaeobot Palynol. 52(2–3):119–129. doi: 10.1016/0034-6667(87)90049-2.
  • Manchester SR, Bonde SD, Nipunage DS, Srivatava R, Mehrotra RC, Smith SY. 2016. Trilocular palm fruits from the Deccan Inter-trappean beds of India. Int J Plant Sci. 177(7):633–641. doi: 10.1086/687290.
  • Manchester SR, Lehman TM, Wheeler EA. 2010. Fossil palms (Arecaceae, Coryphoideae) associated with juvenile herbivorous dinosaurs in the upper Cretaceous Aguja formation, Big Bend National Park, Texas. Int J Plant Sci. 171(6):679–689. doi: 10.1086/653688.
  • Matsunaga KK, Manchester SR, Srivastava R, Kapgate DK, Smith SY. 2019. Fossil palm fruits from India indicate a Cretaceous origin of Arecaceae tribe Borasseae. Bot J Linn Soc. 190(3):260–280. doi: 10.1093/botlinnean/boz019.
  • Pathak V, Patil SK, Shrivastava JP. 2017. Tectonomagmatic setting of lava packages in the Mandla lobe of the eastern Deccan volcanic province, India: palaeomagnetism and magnetostratigraphic evidence. Geol Soc London, Special Publications. 445(1):69–94. doi: 10.1144/SP445.3.
  • Poinar JR. 2002. Fossil palm flowers in Dominican and Mexican amber. Bot J Linn. 138(1):57–61. doi: 10.1046/j.1095-8339.2002.00010.x.
  • Prasad M, Khare EG, Singh SK. 2013. Plant fossils from the Deccan Intertrappean sediments of Chhindwara district, Madhya Pradesh, India: their palaeoclimatic significance. J Palaeontol Soc India. 58:229–240.
  • Reichgelt T, West CK, Greenwood DR. 2018. The relation between global palm distribution and climate. Sci Rep. 8(1):4721. doi: 10.1038/s41598-018-23147-2.
  • Roncal J, Zona S, Lewis CE. 2008. Molecular phylogenetic studies of Caribbean palms (Arecaceae) and their relationships to biogeography and conservation. Bot Rev. 74(1):78–102. doi: 10.1007/s12229-008-9005-9.
  • Roy K, Hazra T, Hazra M, Mahato S, Bera S, Khan MA. 2021. A new coryphoid costapalmate palm leaf from the Maastrichtian-Danian of India. Bot Lett. 168(2):155–166. doi: 10.1080/23818107.2020.1845974.
  • Samant B, Mohabey DM. 2009. Palynoflora from deccan volcano-sedimentary sequence (Cretaceous-Palaeogene transition) of Central India: implications for spatio-temporal correlation. J Biosci. 34(5):811–823. doi: 10.1007/s12038-009-0064-9.
  • Schoene B, Eddy MP, Samperton KM, Keller CB, Keller G, Adatte T, Khadri SFR. 2019. U-Pb constraints on pulsed eruption of the Deccan traps across the end-Cretaceous mass extinction. Sci. 363(6429):862–866. doi: 10.1126/science.aau2422.
  • Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SF, Gertsch B. 2015. U-Pb geochronology of the Deccan traps and relation to the end-Cretaceous mass extinction. Sci. 347(6218):182–184. doi: 10.1126/science.aaa0118.
  • Sheth HC, Pande K, Bhutani R. 2001. 40Ar‐39Ar ages of Bombay trachytes: evidence for a Palaeocene phase of Deccan volcanism. Geophys Res Lett. 28(18):3513–3516.
  • Smith SY, Kapgate DK, Robinson S, Srivastava R, Benedict JC, Manchester SR. 2021. Fossil fruits and seeds of Zingiberales from the late Cretaceouse–early Cenozoic Deccan Intertrappean beds of India. Int J Plant Sci. 182:91–108. doi: 10.1086/711474.
  • Smith SY, Manchester SR, Samant B, Mohabey DM, Wheeler E, Baas P, Kapgate D, Srivastava R, Sheldon ND. 2015. Integrating paleobotanical, paleosol, and stratigraphic data to study critical transitions: a case study from the late Cretaceous–Paleocene of India. Paleontol Soc Pap. 21:137–166. doi: 10.1017/S1089332600002990.
  • Sprain CJ, Renne PR, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Sci. 363(6429):866–870. doi: 10.1126/science.aav1446.
  • Srivastava JP, Duncan RA, Kashyap M. 2015. Post-K/PB younger 40Ar–39Ar ages of the Mandla lavas: implications for the duration of the Deccan volcanism. Lithos. 224–225:214–224. doi: 10.1016/j.lithos.2015.03.006.
  • Srivastava R, Srivastava G, Dilcher DL, Wang Q. 2014. Coryphoid palm leaf fossils from the Maastrichtian–Danian of central India with remarks on phytogeography of the Coryphoideae (Arecaceae). PLoS ONE. 9(11):e111738. doi: 10.1371/journal.pone.0111738.
  • Stenzel KG. 1904. Fossile Palmenhölzer, and von Arthaber G Beiträge zur Paläontologie und Geologie Österreich–Ungarns und des Orients, v.15; p.107–228. Wien und Leipzig,K U K Hof-und Universitäts Buchhändler
  • Tang H, Eronen J, Kaakinen A, Utescher T, Ahrens B, Fortelius M. 2015. Strong winter monsoon wind causes surface cooling over India and China in the Late Miocene. Clim Past. 11:63–93.
  • Thomas R, Boura A. 2015. Palm stem anatomy: phylogenetic or climatic signal? Bot J Linn. 178(3):467–488. doi: 10.1111/boj.12274.
  • Thomas R, De Franceschi D. 2012. First evidence of fossil Cryosophileae (arecaceae) outside the Americas (early Oligocene and late miocene of France): anatomy, palaeobiogeography and evolutionary implications. Rev Palaeobot Palynol. 171:27–39. doi: 10.1016/j.revpalbo.2011.11.010.
  • Thomas R, Franceschi D. 2013. Palm stem anatomy and computer-aided identification: the Coryphoideae (Arecaceae). Bot J Linn. 100(2):289–313. doi: 10.3732/ajb.1200242.
  • Tomlinson PB. 1961. Palmae. In: ‘Anatomy of the monocotyledons. Vol. 2. Clarendon Press:Oxford, UK: CR Metcalfe; pp. 1–453.
  • Tomlinson PJH, Fisher JB. 2011. The anatomy of palms. Oxford, UK: Oxford Universit Press.
  • Uhl NW, Dransfield J, Davis JI, Luckow MA, Hansen KS, Doyle JJ. 1995. Phylogenetic relationships among palms: cladistic analyses of morphological and chloroplast DNA restriction site variation. Monocotyledons: Systematics and evolution. 2:623–661.
  • Venkatesan TR, Kumar A, Gopalan K, Al'Mukhamedov AI. 1997. 40Ar–39Ar age of Siberian basaltic volcanism. Chem Geol. 138(3–4):303–310.
  • Wang CS, Dai JG, Zha XX. 2014. Outward-growth of the tibetan plateau during the Cenozoic: a review. Tectonophysics. 621:1–43. doi: 10.1016/j.tecto.2014.01.036.
  • Webb SD. 1985. Late Cenozoic mammal dispersals between the Americas. The great American biotic interchange. Boston, MA: Springer; pp. 357–386.
  • Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 451(7176):279–283. doi: 10.1038/nature06588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.