69
Views
0
CrossRef citations to date
0
Altmetric
Physiology, anatomy, morphology

Perianth phyllotaxis and symmetry in Lamiales

ORCID Icon &
Pages 166-180 | Received 23 Oct 2023, Accepted 07 Jan 2024, Published online: 14 Jan 2024

References

  • Bello MA, Rudall PJ, González F, Fernández‐Alonso JL. 2004. Floral morphology and development in Aragoa (Plantaginaceae) and related members of the order lamiales. Int J Plant Sci. 165(5):723–738. doi: 10.1086/422046.
  • Braun A. 1831. Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen als Einleitung zur Untersuchung der Blattstellung überhaupt. Bonn: Thormann.
  • Bravais A. 1850. Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l’espace. J Écol Pol. 19:1–128.
  • Bravais L, Bravais A. 1837. Essai sur la disposition symétrique des inflorescences. Ann Sci Nat Bot. 7:193-221; 291–348.
  • Bull-Hereñu K, Claßen-Bockhoff R. 2011. Open and closed inflorescences: more than simple opposites. J Exp Bot. 62(1):79–88. doi: 10.1093/jxb/erq262.
  • Bull-Hereñu K, dos Santos P, Toni JFG, El Ottra JHL, Thaowetsuwan P, Jeiter J, et al. 2022. Mechanical forces in floral development. Plants. 11(5):661. doi:10.3390/plants11050661.
  • Carpenter R, Copsey L, Vincent C, Doyle S, Magrath R, Coen E. 1995. Control of flower development and phyllotaxy by meristem identity genes in Antirrhinum. Plant Cell. 7(12):2001–2011. doi: 10.1105/tpc.7.12.2001.
  • Choob V. 2022. Prophyll in monocots: the starting point of lateral shoot phyllotaxis. Front Plant Sci. 13:855146. doi: 10.3389/fpls.2022.855146.
  • Citerne HL, Möller M, Cronk QCB. 2000. Diversity of cycloidea-like genes in gesneriaceae in relation to floral symmetry. Ann Bot. 86(1):167–176. doi: 10.1006/anbo.2000.1178.
  • Claßen-Bockhoff R, Bull-Hereñu K. 2013. Towards an ontogenetic understanding of inflorescence diversity. Ann Bot. 112(8):1523–1542. doi: 10.1093/aob/mct009.
  • Curie P. 1894. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J Phys Th App. 3:393–417. doi: 10.1051/jphystap:018940030039300.
  • Douady S, Couder Y. 1996. Phyllotaxis as a dynamical self-organizing process. Part I: the spiral modes resulting from time-periodic iterations. J Th Biol. 178(3):255–273. doi: 10.1006/jtbi.1996.0024.
  • Eichler AW. 1875. Blüthendiagramme construirt und erläutert. Vol. Volume I, Leipzig: Engelmann.
  • Endress PK. 1998. Antirrhinum and asteridae evolutionary changes of floral symmetry. Symp Soc Exp Biol. 51:133–140.
  • Endress PK. 1999. Symmetry in flowers: diversity and evolution. Int J Plant Sci. 160(S6):S3–S23. doi: 10.1086/314211.
  • Galván-Ampudia C, Cerutti G, Legrand J, Brunoud G, Martin-Arevalillo R, Azais R, et al. 2020. Temporal integration of auxin information for the regulation of patterning. eLife. 9:e55832. doi: 10.7554/eLife.55832.
  • Garcês HM, Spencer VM, Kim M. 2016. Control of floret symmetry by RAY3, SvDIV1B, and SvRAD in the capitulum of Senecio vulgaris. Plant Physiol. 171(3):2055–2068. doi: 10.1104/pp.16.00395.
  • Godin C, Golé C, Douady S. 2020. Phyllotaxis as geometric canalization during plant development. Development. 147(19):dev165878. doi: 10.1242/dev.165878.
  • Hofmeister W. 1868. Allgemeine Morphologie der Gewachse. Leipzig: Engelmann.
  • Howarth DG, Donoghue MJ. 2006. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci U S A. 103(24):9101–9106. doi: 10.1073/pnas.0602827103.
  • Kampny CM, Dickinson TA, Dengler NG. 1993. Quantitative comparison of floral development in Veronica chamaedrys and Veronicastrum virginicum (Scrophulariaceae). Am J Bot. 80(4):449–460. doi: 10.1002/j.1537-2197.1993.tb13823.x.
  • Kitazawa MS, Fujimoto K. 2015. A dynamical phyllotaxis Model to determine floral organ number. PLOS Comp Biol. 11(5):e1004145. doi: 10.1371/journal.pcbi.1004145.
  • Knuth P. 1899. Handbuch der Blütenbiologie. Leipzig: Engelmann.
  • Lucibelli F, Valoroso MC, Aceto S. 2020. Radial or bilateral? The molecular basis of floral symmetry. Genes. 11(4):395. doi: 10.3390/genes11040395.
  • Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. 1999. Control of organ asymmetry in flowers of Antirrhinum. Cell. 99(4):367–376. doi: 10.1016/S0092-8674(00)81523-8.
  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature. 383(6603):794–799. doi: 10.1038/383794a0.
  • Meicenheimer RD. 1979. Relationships between shoot growth and changing phyllotaxy of ranunculus. Am J Bot. 66(5):557–569. doi: 10.1002/j.1537-2197.1979.tb06258.x.
  • Naghiloo S. 2020. Patterns of symmetry expression in angiosperms: developmental and evolutionary lability. Front Ecol Evol. 8:104. doi: 10.3389/fevo.2020.00104.
  • Naghiloo S, Dadpour MR, Gohari G, Endress PK. 2013. Comparative study of inflorescence development in oleaceae. Am J Bot. 100(4):647–663. doi: 10.3732/ajb.1200171.
  • Nakagawa A, Kitazawa MS, Fujimoto K. 2020. A design principle for floral organ number and arrangement in flowers with bilateral symmetry. Development. 147:dev182907. doi: 10.1242/dev.182907.
  • Pang HB, Pang Sun QW, He SZ, Wang YZ. 2010. Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia (gesneriaceae). J Syst Evol. 48(5):309–317. doi: 10.1111/j.1759-6831.2010.00091.x.
  • Preston JC, Kost MA, Hileman LC. 2009. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phyt. 182(3):751–762. doi: 10.1111/j.1469-8137.2009.02794.x.
  • Preston JC, Martinez CC, Hileman LC. 2011. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proc Natl Acad Sci U S A. 108(6):2343–2348. doi: 10.1073/pnas.1011361108.
  • Reyes E, Sauquet H, Nadot S. 2016. Perianth symmetry changed at least 199 times in angiosperm evolution. Taxon. 65(5):945–964. doi: 10.12705/655.1.
  • Sehr EM, Weber A. 2009. Floral ontogeny of Oleaceae and its systematic impications. Int J Plant Sci. 170(7):845–859. doi: 10.1086/599074.
  • Sengupta A, Hileman LC. 2022. A CYC–RAD–DIV–DRIF interaction likely pre-dates the origin of floral monosymmetry in Lamiales. EvoDevo. 13(1):3. doi: 10.1186/s13227-021-00187-w.
  • Sokoloff D, Remizowa M, Bateman R, et al. 2018. Was the ancestral angiosperm flower whorled throughout? Am J Bot. 105(1):5–15. doi:10.1002/ajb2.1003.
  • Soltis D., Endress, P., Chase, M., Manchester, S., Judd, W., Mavrodiev, E, et al. 2018. Phylogeny and evolution of the angiosperms. The University of Chicago Press.
  • Spencer V, Kim M. 2018. Re“cyc”ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol. 79:16–26. doi: 10.1016/j.semcdb.2017.08.052.
  • Tucker SC. 2003. Floral development in legumes. Plant Phys. 131(3):911–926. doi: 10.1104/pp.102.017459.
  • Vincent CA, Coen ES. 2004. A temporal and morphological framework for flower development in antirrhinum majus. Can J Bot. 82(5):681–690. doi: 10.1139/b04-042.
  • Walch JP. 2022. Modeling phyllotaxis: from the inhibition potential to the real plant. J Th Biol. 553:111261. doi: 10.1016/j.jtbi.2022.111261.
  • Walch JP, Blaise S. 2022a. Mathematical modeling the influence of Bracteoles on sepal arrangement. Flora. 295: 152138.
  • Walch JP, Blaise S. 2022b. Modeling basal angiosperm floral phyllotaxis. Bot Let. 169(3):305–318. doi: 10.1080/23818107.2022.2067226.
  • Walch JP, Blaise S. 2023. Phyllotaxis models: a tool for evolutionary biologists. London: ISTE/Wiley.
  • Wessinger CA, Hileman LC. 2020. Parallelism in flower evolution and development. Annu Rev Ecol Evol Syst. 51(1):387–408. doi: 10.1146/annurev-ecolsys-011720-124511.
  • Zhong J, Kellogg EA. 2015. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales. Am J Bot. 102(8):1260–1267. doi: 10.3732/ajb.1500191.
  • Zhong J, Preston JC, Hileman LC, Kellogg EA. 2017. Repeated and diverse losses of corolla bilateral symmetry in the lamiaceae. Ann Bot. 119(7):1211–1223. doi: 10.1093/aob/mcx012.
  • Zhou XR, Wang YZ, Smith JF, Chen R. 2008. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (gesneriaceae). New Phyt. 178(3):532–543. doi: 10.1111/j.1469-8137.2008.02384.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.