22
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Variation in pollen viability among Leptochloa crinita accessions: implications for directed crosses

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Received 07 Jan 2024, Accepted 04 Jun 2024, Published online: 13 Jun 2024

References

  • Ahmad F, Khan MA, Ahmad M, Zafar M, Khan A, Iqbal Z. 2011. Palynological studies in tribe Chlorideae (Poaceae) from salt range of Pakistan. Afr J Biotechnol. 10(44):8909–8913. doi: 10.5897/AJB10.2512.
  • Bheemanahalli R, Sunoj VSJ, Saripalli G, Prasad PVV, Balyan HS, Gupta PK, Grant N, Gill KS, Jagadish SVK. 2019. Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Sci. 59(2):684–696. doi: 10.2135/cropsci2018.05.0292.
  • Cavagnaro PF, Cavagnaro JB, Lemes JL, Masuelli RW, Passera CB. 2006. Genetic diversity among varieties of the native forage grass Trichloris crinita based on AFLP markers, morphological characters, and quantitative agronomic traits. Genome. 49(8):906–918. doi: 10.1139/g06-060.
  • Cavagnaro JB, Dalmasso A. 1983. Response to different intensity and frequency of cutting in native grasses of Mendoza Pappophorum caespitosum and Trichloris crinita. Deserta. 7:203–218.
  • Cavagnaro JB, Trione SO. 2007. Physiological, morphological and biochemical responses to shade of Trichloris crinita, a forage grass from the arid zone of Argentina. J Arid Environ. 68(3):337–347. doi: 10.1016/j.jaridenv.2006.06.004.
  • Dafni A, Firmage D. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol. 222(1–4):113–132. doi: 10.1007/BF00984098.
  • Dafni A, Pacini E, Nepi M. 2005. Pollen and stigma biology. In Dafni A, Kevan P Husband B, editors. Practical pollination biology. Cambridge (UK): Enviroquest Ltd; p. 83–142.
  • Dinato NB, Santos IRI, Leonardecz E, Burson BL, Quarín CL, de Paula Af, Fávero AP. 2018. Storage of Bahiagrass pollen at different temperatures. Crop Sci. 58(6):2391–2398. doi: 10.2135/cropsci2018.03.0164.
  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. 2020. InfoStat versión 2020. Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. http://www.infostat.com.ar. URL.
  • Di Rienzo JA, Guzman AW, Casanoves F. 2002. A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat. 7(2):129–142. doi: 10.1198/10857110260141193.
  • Dominguez DLE, Cavagnaro JB, Panasiti Ros J, Le AT, Chung YC, Cavagnaro PF. 2023. Genetic diversity for drought tolerance in the native forage grass Trichloris crinita and possible morpho-physiological mechanisms involved. Front Plant Sci. 14:1235923. doi: 10.3389/fpls.2023.1235923.
  • Dominguez DLE, Cavagnaro JB, Pérez MB, Cavagnaro PF. 2022. Plant dry weight and nutritive value of genetically diverse germplasm of false Rhodes grass [Leptochloa crinita (Lag.) P.M. Peterson and N.W. Snow], a native forage grass from arid regions of the Americas. Crop Sci. 62(2):610–623. doi: 10.1002/csc2.20678.
  • Fu J-H, Lei L-G, Chen L, Qiu G-Z. 2001. Wall ultrastructure and cytochemistry and the longevity of pollen of three grass species. Aust J Bot. 49(6):771–776. doi: 10.1071/BT00085.
  • Ge Y, Fu C, Bhandari H, Bouton J, Brummer EC, Wang Z-Y. 2011. Pollen viability and longevity of Switchgrass (Panicum virgatum L.). Crop Sci. 51(6):2698–2705. doi: 10.2135/cropsci2011.01.0057.
  • Gins EM, Egorova AS, Sivolapova AB, Semenov AZ, Apshev KK, Meleshin AA, Moskalev EA, Polivanova OB, Belov GL, Goryunova SV. 2022. Pollen fertility assessment through acetocarmine staining and in vitro germination in Solanum tuberosum L. SABRAO J Breed Genet. 54(5):1037–1048. doi: 10.54910/sabrao2022.54.5.7.
  • Greco S, Cavagnaro JB. 2003. Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecol. 164(1):125–135. doi: 10.1023/A:1021217614767.
  • Guevara JC, Grünwaldt EG, Estevez OR, Bisigato AJ, Blanco LJ, Biurrun FN, Ferrando CA, Chirino CC, Morici E, Fernández B, et al. 2009. Range and livestock production in the Monte Desert, Argentina. J Arid Environ. 73(2):228–237. doi: 10.1016/j.jaridenv.2008.02.001.
  • Gutierrez HF, Richard GA, Cerino MC. 2016. Sistema reproductivo de Trichloris (Poaceae, Chloridoideae, Chlorideae). Bol Soc Argent Bot. 51(1):111–122. doi: 10.31055/1851.2372.v51.n1.14421.
  • Hanna WW, Towill LE. 1995. Long-term pollen storage. In Janick J, editor. Plant breeding reviews. (NY): John Wiley and Sons; p. 179–207. 10.1002/9780470650059.ch5.
  • Hoekstra FA, Crowe JH, Crowe LM, Vanroekel T, Vermeer E. 1992. Do phospholipids and sucrose determine membrane phase-transitions in dehydrating pollen species. Plant, Cell & Environ. 15(5):601–606. doi: 10.1111/j.1365-3040.1992.tb01494.x.
  • Impe D, Reitz J, Köpnick C, Rolletschek H, Börner A, Senula A, Nagel M. 2020. Assessment of pollen viability for wheat. Front Plant Sci. 10:1588. doi: 10.3389/fpls.2019.01588.
  • Jagadish SV, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ. 2010. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot. 61(1):143–156. doi: 10.1093/jxb/erp289.
  • Jiang Y, Lahlali R, Karunakaran C, Kumar S, Davis AR, Bueckert RA. 2015. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant, Cell & Environ. 38(11):2387–2397. doi: 10.1111/pce.12589.
  • Kang HG, Bae TW, Jeong OC, Sun HJ, Lim PO, Lee HY. 2009. Evaluation of viability, shedding pattern, and longevity of pollen from genetically modified (GM) herbicide-tolerant and wild-type Zoysiagrass (Zoysia japonica Steud.). J Plant Biol. 52(6):630–634. doi: 10.1007/s12374-009-9074-2.
  • Kozub PC, Barboza K, Galdeano F, Quarin CL, Cavagnaro JB, Cavagnaro PF. 2017. Reproductive biology of the native forage grass Trichloris crinita (Poaceae, Chloridoideae). Plant Biol. 19(3):444–453. doi: 10.1111/plb.12549.
  • Kozub PC, Cavagnaro JB, Cavagnaro PF. 2018. Exploiting genetic and physiological variation of the native forage grass Trichloris crinita for revegetation in arid and semi-arid regions: An integrative review. Grass Forage Sci. 73(2):257–271. doi: 10.1111/gfs.12337.
  • Leduc N, Monnier M, Douglas GC. 1990. Germination of trinucleated pollen: formulation of a new medium for Capsella bursa-pastoris. Sex Plant Reprod. 3(4):228–235. doi: 10.1007/bf00202880.
  • Li YM, Chen LB. 1998. Vigor change of several grass pollen stored in different temperature and humidity conditions. Bull Plant Physiol. 34:35–37 (in Chinese). doi: 10.1016/j.btre.2019.e00309.
  • Luna VS, Figueroa MJ, Baltazar MB, Gomez LR, Townsend R, Schoper JB. 2001. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 41(5):1551–1557. doi: 10.2135/cropsci2001.4151551x.
  • Malayeri BE, Noori M, Jafari M. 2012. Using the pollen viability and morphology for fluoride pollution biomonitoring. Biol Trace Elem Res. 147(1–3):315–319. doi: 10.1007/s12011-011-9290-8.
  • Marinoni LR, Richard GA, Bustos D, Taleisnik EL, Pensiero JF, Zabala JM. 2020. Differential response of Trichloris ecotypes from different habitats to drought and salt stress. Theor Exp Plant Physiol. 32(3):213–229. doi: 10.1007/s40626-020-00182-x.
  • Marks GE. 1954. An acetocarmine glycerol jelly for use in pollen-fertility counts. Stain Technol. 29(5):277–277. doi: 10.3109/10520295409115483.
  • Muccifora S, Bellani LM, Gori P. 2003. Ultrastructure, viability, and in vitro germination of the tricellular Sambucus nigra L. pollen. Int J Plant Sci. 164(6):855–860. doi: 10.1086/378660.
  • Nazir A, Khan MA, Zahidullah AA. 2013. Palynological studies in tribe Aveneae (Poaceae) from Potohar of Pakistan. Int J Sci: Basic Appl Res. 10:120–125.
  • Ordoñez B. 2014. Brochure: pollen viability assessment 8. Lima, Peru: International Potato Center (CIP).
  • Ortiz JPA, Pessino SC, Bhat V, Hayward MD, Quarín CL. 2001. A genetic linkage map of diploid Paspalum notatum. Crop Sci. 41(3):823–830. doi: 10.2135/cropsci2001.413823x.
  • Pacini E, Dolferus R. 2019. Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Front Plant Sci. 10:679. doi: 10.3389/fpls.2019.00679.
  • Pan RZ, Dong Y-D. 1995. Plant physiology. 2nd ed. Vol. 2. Beijing: Higher Education Press (in Chinese).
  • Passera CB, Borsetto O, Candia RJ, Stasi CR. 1992. Shrub control and seeding influences on grazing capacity in Argentina. J Range Manag. 45(5):480–482. doi: 10.2307/4002906.
  • Peterson PM, Romaschenko K, Arrieta YH. 2015. A molecular phylogeny and classification of the Eleusininae with a new genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae). Taxon. 64(3):445–467. doi: 10.12705/643.5.
  • Peterson PM, Romaschenko K, Herrera Arrieta Y, Vorontsova MS. 2022. Phylogeny, classification, and biogeography of Afrotrichloris, Apochiton, Coelachyrum, Dinebra, Eleusine, Leptochloa, Schoenefeldia, and a new genus, Schoenefeldiella (Poaceae: Chloridoideae: Cynodonteae: Eleusininae). J Syst Evol. 60(3):630–639. doi: 10.1111/jse.12803.
  • Peterson PM, Romaschenko K, Snow N, Johnson G. 2012. A molecular phylogeny and classification of Leptochloa (Poaceae: Chloridoideae: Chlorideae) sensu lato and related genera. Ann Bot. 109(7):1317–1330. doi: 10.1093/aob/mcs077.
  • Quiroga RE, Blanco LJ, Orionte E. 2009. Evaluación de estrategias de rehabilitación de pastizales áridos. Ecol Austral. 19:107–117.
  • Quiroga RE, Fernández RJ, Golluscio RA, Blanco LJ. 2013. Differential water-use strategies and drought resistance in Trichloris crinita plants from contrasting aridity origins. Plant Ecol. 214(8):1027–1035. doi: 10.1007/s11258-013-0228-4.
  • Quiroga RE, Premoli AC, Fernández RJ, Bosso L. 2018. Climatic niche shift in the amphitropical disjunct grass Trichloris crinita. PLOS ONE. 13(6):1–16. doi: 10.1371/journal.pone.0199811.
  • Rajasekharan PE, Ganeshan S. 2018. Current perspectives on pollen cryopreservation in horticultural species. III international symposium on plant cryopreservation. Acta Hortic. 1234. p. 47–56.
  • Rajasekharan PE, Rohini MR. 2023. Pollen cryopreservation: advances and prospects. In Rajasekharan P Rohini M, editors. Pollen cryopreservation protocols. Humana: Springer Protocols Handbooks. New York; p. 1–18. 10.1007/978-1-0716-2843-0_1.
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9(7):671–675. doi: 10.1038/nmeth.2089.
  • Shi DQ, Yang WC. 2010. Pollen germination and tube growth. In Pua E Davey M, editors. Plant developmental biology - Biotechnological perspectives. Heidelberg: Springer Berlin; p. 245–282. 10.1007/978-3-642-02301-9_13.
  • Stanley RG, Linskens HF. 2012. Pollen: biology biochemistry management 310. Heidelberg: Springer Berlin. 10.1007/978-3-642-65905-8.
  • Tushabe D, Rosbakh S. 2021. A compendium of in vitro germination media for pollen research. Front Plant Sci. 12:709945. doi: 10.3389/fpls.2021.709945.
  • USDA-NRCS. 2020. Release brochure for Kinney Germplasm false Rhodes grass [Trichloris crinita (Lag.) Parodi]. USDA-Natural Resources Conservation Service, E. “Kika” de la Garza Plant Materials Center, Kingsville, Texas 78363. https://nrcs.usda.gov/plantmaterials/stpmcrb13709.pdf.
  • Wainstein P, Gonzalez S. 1969. Nutritive value of forage plants from the east of Mendoza Province, Ñacuñán Forest Reserve. Rev Fac Cienc Agrar. 15:133–142.
  • Wang Z-Y, Ge Y, Scott M, Spangenberg G. 2004. Viability and longevity of pollen from transgenic and nontransgenic tall fescue (Festuca arundinacea) (Poaceae) plants. Amer J Bot. 91(4):523–530. doi: 10.3732/ajb.91.4.523.
  • Williams JH, Brown CD. 2018. Pollen has higher water content when dispersed in a tricellular state than in a bicellular state. Acta Bot Bras. 32(3):454–461. doi: 10.1590/0102-33062018abb0129.
  • Youmbi E, The C, Tedjacno A. 2005. Conservation of the germination capacity of pollen grains in three varieties of maize (Zea mays L.). Grana. 44(3):152–159. doi: 10.1080/00173130500233271.
  • Žilić S, Vančetović J, Janković M, Maksimović V. 2014. Chemical composition, bioactive compounds, antioxidant capacity and stability of floral maize (Zea mays L.) pollen. J Funct Foods. 10:65–74. doi: 10.1016/j.jff.2014.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.