511
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stream Distance-Based Geographically Weighted Regression for Exploring Watershed Characteristics and Water Quality Relationships

ORCID Icon, ORCID Icon &
Pages 390-408 | Received 17 Dec 2021, Accepted 27 May 2022, Published online: 03 Oct 2022

References

  • Anselin, L. 2001. Spatial econometrics. In A companion to theoretical econometrics, ed. B. H. Baltagi, 310–33. Oxford, UK: Blackwell.
  • Brunsdon, C., S. Fotheringham, and M. Charlton. 1998. Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician) 47 (3):431–43. doi: 10.1111/1467-9884.00145.
  • Chang, H. 2008. Spatial analysis of water quality trends in the Han River Basin, South Korea. Water Research 42 (13):3285–3304. doi: 10.1016/j.watres.2008.04.006.
  • Chang, H., and M. Psaris. 2013. Local landscape predictors of maximum stream temperature and thermal sensitivity in the Columbia River Basin, USA. The Science of the Total Environment 461–462:587–600. doi: 10.1016/j.scitotenv.2013.05.033.
  • Chang, H., M. Yasuyo, and E. Foster. 2021. Effects of land use change, wetland fragmentation, and best management practices on total suspended solids concentrations in an urbanizing Oregon watershed, USA. Journal of Environmental Management 282:111962. doi: 10.1016/j.jenvman.2021.111962.
  • Charlton, M., and A. S. Fotheringham. 2009. Geographically weighted regression white paper. National Centre for Geocomputation National University of Ireland Maynooth, Maynooth, Ireland.
  • Chen, Q., K. Mei, R. A. Dahlgren, T. Wang, J. Gong, and M. Zhang. 2016. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. The Science of the Total Environment 572:450–66. doi: 10.1016/j.scitotenv.2016.08.052.
  • Chung, E.-S., P. J. Abdulai, H. Park, Y. Kim, S. R. Ahn, and S. J. Kim. 2016. Multi-criteria assessment of spatial robust water resource vulnerability using the TOPSIS method coupled with objective and subjective weights in the Han River Basin. Sustainability 9 (1):29. doi: 10.3390/su9010029.
  • Comber, A., K. Chi, M. Q. Huy, Q. Nguyen, B. Lu, H. H. Phe, and P. Harris. 2020. Distance metric choice can both reduce and induce collinearity in geographically weighted regression. Environment and Planning B: Urban Analytics and City Science 47 (3):489–507. doi: 10.1177/2399808318784017.
  • Cressie, N. 1988. Spatial prediction and ordinary kriging. Mathematical Geology 20 (4):405–21. doi: 10.1007/BF00892986.
  • Crosby, H., T. Damoulas, and S. A. Jarvis. 2019. Embedding road networks and travel time into distance metrics for urban modelling. International Journal of Geographical Information Science 33 (3):512–36. doi: 10.1080/13658816.2018.1547386.
  • Dale, M. R. T., and M.-J. Fortin. 2010. From graphs to spatial graphs. Annual Review of Ecology, Evolution, and Systematics 41 (1):21–38. doi: 10.1146/annurev-ecolsys-102209-144718.
  • Davis, B. J. K., and F. C. Curriero. 2019. Development and evaluation of geostatistical methods for non-euclidean-based spatial covariance matrices. Mathematical Geosciences 51 (6):767–91. doi: 10.1007/s11004-019-09791-y.
  • Deng, X. 2019. Correlations between water quality and the structure and connectivity of the river network in the Southern Jiangsu Plain, Eastern China. The Science of the Total Environment 664:583–94. doi: 10.1016/j.scitotenv.2019.02.048.
  • Edwards, A. C., and P. J. A. Withers. 2008. Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK. Journal of Hydrology 350 (3–4):144–53. doi: 10.1016/j.jhydrol.2007.10.053.
  • ESRI. 2020. ArcGIS Desktop 10.7.1 quick start guide—ArcGIS Help | Documentation. Accessed April 16, 2020.
  • Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2002. Geographically weighted regression: The analysis of spatially varying relationships. Chichester, UK: Wiley.
  • Fotheringham, A. S., W. Yang, and W. Kang. 2017. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers 107 (6):1247–65. doi: 10.1080/24694452.2017.1352480.
  • Ganio, L. M., C. E. Torgersen, and R. E. Gresswell. 2005. A geostatistical approach for describing spatial pattern in stream networks. Frontiers in Ecology and the Environment 3 (3):138–44. doi: 10.1890/1540-9295(2005)003[0138:AGAFDS.2.0.CO;2]
  • Han River Flood Control Office (HRFCO). 2021. Welcome to Han River FCO webpage. Accessed November 15, 2021. http://www.hrfco.go.kr/eng/service_1.do.
  • Harris, P., A. S. Fotheringham, and S. Juggins. 2010. Robust geographically weighted regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Annals of the Association of American Geographers 100 (2):286–306. doi: 10.1080/00045600903550378.
  • Hong, C.-Y., H. Chang, and E.-S. Chung. 2019. Comparing the functional recognition of aesthetics, hydrology, and quality in urban stream restoration through the framework of environmental perception. River Research and Applications 121:1–10. Accessed May 20, 2019. doi: 10.1002/rra.3423.
  • Hu, X., L. A. Waller, M. Z. Al-Hamdan, W. L. Crosson, M. G. Estes, S. M. Estes, D. A. Quattrochi, J. A. Sarnat, and Y. Liu. 2013. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environmental Research 121:1–10. doi: 10.1016/j.envres.2012.11.003.
  • Isaak, D. J., E. E. Peterson, J. M. Ver Hoef, S. J. Wenger, J. A. Falke, C. E. Torgersen, C. Sowder, E. A. Steel, M.-J. Fortin, C. E. Jordan, et al. 2014. Applications of spatial statistical network models to stream data: Spatial statistical network models for stream data. Wiley Interdisciplinary Reviews: Water 1 (3):277–94. doi: 10.1002/wat2.1023.
  • Kattwinkel, M., E. Szöcs, E. Peterson, and R. B. Schäfer. 2020. Preparing GIS data for analysis of stream monitoring data: The R package openSTARS, ed. S. Nedkov. PLoS ONE 15 (9):e0239237.
  • Kaushal, S. S., and K. T. Belt. 2012. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosystems 15 (2):409–35. doi: 10.1007/s11252-012-0226-7.
  • Larsen, S., M. C. Bruno, I. P. Vaughan, and G. Zolezzi. 2019. Testing the river continuum concept with geostatistical stream-network models. Ecological Complexity 39:100773. doi: 10.1016/j.ecocom.2019.100773.
  • Larsen, S., B. Majone, P. Zulian, E. Stella, A. Bellin, M. C. Bruno, and G. Zolezzi. 2021. Combining hydrologic simulations and stream‐network models to reveal flow‐ecology relationships in a large Alpine catchment. Water Resources Research 57 (4):1582–1600. doi: 10.1029/2020WR028496.
  • Li, K., and N. S. N. Lam. 2018. Geographically weighted elastic net: A variable-selection and modeling method under the spatially nonstationary condition. Annals of the American Association of Geographers 108 (6):1582–1600. doi: 10.1080/24694452.2018.1425129.
  • Lintern, A., J. A. Webb, D. Ryu, S. Liu, U. Bende‐Michl, D. Waters, P. Leahy, P. Wilson, and A. W. Western. 2018. Key factors influencing differences in stream water quality across space. Wiley Interdisciplinary Reviews: Water 5 (1):1–31.
  • Lintern, A., J. A. Webb, D. Ryu, S. Liu, D. Waters, P. Leahy, U. Bende-Michl, and A. W. Western. 2018. What are the key catchment characteristics affecting spatial differences in riverine water quality? Water Resources Research 54 (10):7252–72. doi: 10.1029/2017WR022172.
  • Liu, J., X. Zhang, B. Wu, G. Pan, J. Xu, and S. Wu. 2017. Spatial scale and seasonal dependence of land use impacts on riverine water quality in the Huai River Basin, China. Environmental Science and Pollution Research International 24 (26):20995–21010. doi: 10.1007/s11356-017-9733-7.
  • Lu, B., C. Brunsdon, M. Charlton, and P. Harris. 2017. Geographically weighted regression with parameter-specific distance metrics. International Journal of Geographical Information Science 31 (5):982–98. doi: 10.1080/13658816.2016.1263731.
  • Lu, B., M. Charlton, and A. S. Fotheringham. 2011. Geographically weighted regression using a non-Euclidean distance metric with a study on London house price data. Procedia Environmental Sciences 7:92–97. doi: 10.1016/j.proenv.2011.07.017.
  • Lu, B., M. Charlton, P. Harris, and A. S. Fotheringham. 2014. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science 28 (4):660–81. doi: 10.1080/13658816.2013.865739.
  • Lu, B., P. Harris, M. Charlton, and C. Brunsdon. 2014. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science 17 (2):85–101. doi: 10.1080/10095020.2014.917453.
  • Lu, B., P. Harris, M. Charlton, C. Brunsdon, T. Nakaya, D. Murakami, and I. Gollini. 2019. Package ‘GWmodel.’ Accessed February 28, 2020. https://cran.r-project.org/web/packages/GWmodel/GWmodel.pdf.
  • Mainali, J., and H. Chang. 2018. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea. Journal of Hydrology 564:26–40. doi: 10.1016/j.jhydrol.2018.06.074.
  • Mainali, J., and H. Chang. 2020. Putting space into modeling landscape and water quality relationships in the Han River Basin, South Korea. Computers, Environment and Urban Systems 81(May):101461. doi: 10.1016/j.compenvurbsys.2020.101461.
  • Mainali, J., and H. Chang. 2021. Environmental and spatial factors affecting surface water quality in a Himalayan watershed, Central Nepal. Environmental and Sustainability Indicators 9:100096. doi: 10.1016/j.indic.2020.100096.
  • Mainali, J., H. Chang, and Y. Chun. 2019. A review of spatial statistical approaches to modeling water quality. Progress in Physical Geography: Earth and Environment 43 (6):801–26. doi: 10.1177/0309133319852003.
  • McManus, M. G., E. D’Amico, E. M. Smith, R. Polinsky, J. Ackerman, and K. Tyler. 2020. Variation in stream network relationships and geospatial predictions of watershed conductivity. Freshwater Science 39 (4):1–721. doi: 10.1086/710340.
  • Murakami, D., B. Lu, P. Harris, C. Brunsdon, M. Charlton, T. Nakaya, and D. A. Griffith. 2019. The importance of scale in spatially varying coefficient modeling. Annals of the American Association of Geographers 109 (1):50–70. doi: 10.1080/24694452.2018.1462691.
  • Neill, A. J., D. Tetzlaff, N. J. C. Strachan, R. L. Hough, L. M. Avery, H. Watson, and C. Soulsby. 2018. Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment. The Science of the Total Environment 612:840–52. doi: 10.1016/j.scitotenv.2017.08.151.
  • O’Sullivan, D., and D. Unwin. 2010. Geographic information analysis. Hoboken, NJ: Wiley.
  • Peterson, E. E., and J. M. Ver Hoef. 2010. A mixed-model moving-average approach to geostatistical modeling in stream networks. Ecology 91 (3):644–51. doi: 10.1890/08-1668.1.
  • Peterson, E., and J. Ver Hoef. 2014. STARS: An ArcGIS toolset used to calculate the spatial information needed to fit spatial statistical models to stream network data. Journal of Statistical Software 56 (2):1–17. doi: 10.18637/jss.v056.i02.
  • Peterson, E. E., J. M. Ver Hoef, D. J. Isaak, J. A. Falke, M.-J. Fortin, C. E. Jordan, K. McNyset, P. Monestiez, A. S. Ruesch, A. Sengupta, et al. 2013. Modelling dendritic ecological networks in space: An integrated network perspective. Ecology Letters 16 (5):707–19. doi: 10.1111/ele.12084.
  • Pratt, B., and H. Chang. 2012. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. Journal of Hazardous Materials 209–210:48–58. doi: 10.1016/j.jhazmat.2011.12.068.
  • R Project. 2020. R: The R Project for Statistical Computing. Accessed April 16, 2020. https://www.r-project.org/.
  • Rimba, A. B., G. Mohan, S. K. Chapagain, A. Arumansawang, C. Payus, K. Fukushi, T. Osawa, and R. Avtar. 2021. Impact of population growth and land use and land cover (LULC) changes on water quality in tourism-dependent economies using a geographically weighted regression approach. Environmental Science and Pollution Research International 28 (20):25920–38. doi: 10.1007/s11356-020-12285-8.
  • Rodríguez-González, P. M., C. García, A. Albuquerque, T. Monteiro-Henriques, C. Faria, J. B. Guimarães, D. Mendonça, F. Simões, M. T. Ferreira, A. Mendes, et al. 2019. A spatial stream-network approach assists in managing the remnant genetic diversity of riparian forests. Scientific Reports 9 (1):6741. doi: 10.1038/s41598-019-43132-7.
  • Scown, M. W., M. G. McManus, J. H. Carson, and C. T. Nietch. 2017. Improving predictive models of in-stream phosphorus concentration based on nationally-available spatial data coverages. Journal of the American Water Resources Association 53 (4):944–60. doi: 10.1111/1752-1688.12543.
  • Shen, Z., X. Hou, W. Li, G. Aini, L. Chen, and Y. Gong. 2015. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecological Indicators 48:417–27. doi: 10.1016/j.ecolind.2014.08.019.
  • Sun, Y., Q. Guo, J. Liu, and R. Wang. 2014. Scale effects on spatially varying relationships between urban landscape patterns and water quality. Environmental Management 54 (2):272–87. doi: 10.1007/s00267-014-0287-x.
  • Tiefelsdorf, M., and D. A. Griffith. 2007. Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environment and Planning A: Economy and Space 39 (5):1193–1221. doi: 10.1068/a37378.
  • Tu, J. 2011. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Applied Geography 31 (1):376–92. doi: 10.1016/j.apgeog.2010.08.001.
  • Tu, J., and Z. Xia. 2008. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. The Science of the Total Environment 407 (1):358–78. doi: 10.1016/j.scitotenv.2008.09.031.
  • Turschwell, M. P., E. E. Peterson, S. R. Balcombe, and F. Sheldon. 2016. To aggregate or not? Capturing the spatio-temporal complexity of the thermal regime. Ecological Indicators 67:39–48. doi: 10.1016/j.ecolind.2016.02.014.
  • Ullah, K. A., J. Jiang, and P. Wang. 2018. Land use impacts on surface water quality by statistical approaches. Global Journal of Environment Science and Management 4 (2):231–50.
  • U.S. Geological Survey (USGS). 2017. Nitrogen and water. https://www.usgs.gov/special-topic/water-science-school/science/nitrogen-and-water?qt-science_center_objects=0#qt-science_center_objects.
  • U.S. Geological Survey (USGS). 2021. Sediment and suspended sediment. Accessed November 22, 2021. https://www.usgs.gov/special-topic/water-science-school/science/sediment-and-suspended-sediment?qt-science_center_objects=0#qt-science_center_objects.
  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37 (1):130–37. doi: 10.1139/f80-017.
  • Ver Hoef, J. M., and E. E. Peterson. 2010. A moving average approach for spatial statistical models of stream networks. Journal of the American Statistical Association 105 (489):6–18. doi: 10.1198/jasa.2009.ap08248.
  • Ver Hoef, J. M., E. Peterson, and D. Theobald. 2006. Spatial statistical models that use flow and stream distance. Environmental and Ecological Statistics 13 (4):449–64. doi: 10.1007/s10651-006-0022-8.
  • WAMIS. 2021. Water resources management information system. Accessed November 18, 2021. http://www.wamis.go.kr:8081/wke/wke_wqbase_lst.aspx.
  • Wang, A., D. Yang, and L. Tang. 2020. Spatiotemporal variation in nitrogen loads and their impacts on river water quality in the upper Yangtze River basin. Journal of Hydrology 590:125487. doi: 10.1016/j.jhydrol.2020.125487.
  • WEIS. 2021. Water environment information system: Main. Accessed November 18, 2021. http://water.nier.go.kr/web.
  • Xu, H., and C. Zhang. 2021. Investigating spatially varying relationships between total organic carbon contents and pH values in European agricultural soil using geographically weighted regression. The Science of the Total Environment 752:141977.
  • Yang, X., and W. Jin. 2010. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa. Journal of Environmental Management 91 (10):1943–51. doi: 10.1016/j.jenvman.2010.04.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.