535
Views
1
CrossRef citations to date
0
Altmetric
Articles

Geospatial Analysis of Alaskan Lakes Indicates Wetland Fraction and Surface Water Area Are Useful Predictors of Methane Ebullition

ORCID Icon, , ORCID Icon &
Pages 299-313 | Received 27 Sep 2022, Accepted 20 Oct 2023, Published online: 08 Jan 2024

References

  • Aben, R. C., N. Barros, E. Van Donk, T. Frenken, S. Hilt, G. Kazanjian, L. P. Lamers, E. T. Peeters, J. G. Roelofs, L. N. de Senerpont Domis, et al. 2017. Cross continental increase in methane ebullition under climate change. Nature Communications 8 (1):1682. doi: 10.1038/s41467-017-01535-y.
  • Ali, M. A. 1987. Effect of sample size on the size of the coefficient of determination in simple linear regression. Journal of Information and Optimization Sciences 8 (2):209–19. doi: 10.1080/02522667.1987.10698887.
  • Arctic Monitoring and Assessment Programme. 2015. AMAP assessment 2015: Methane as an Arctic climate forcer. Oslo, Norway: Arctic Monitoring and Assessment Programme.
  • Bastviken, D., J. Cole, M. Pace, and L. Tranvik. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18 (4): 238. doi: 10.1029/2004GB002238.
  • Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich-Prast. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331 (6013):50. doi: 10.1126/science.1196808.
  • Cooley, S. W., L. C. Smith, J. C. Ryan, L. H. Pitcher, and T. M. Pavelsky. 2019. Arctic‐boreal lake dynamics revealed using CubeSat imagery. Geophysical Research Letters 46 (4):2111–20. doi: 10.1029/2018GL081584.
  • Dark, S. J., and D. Bram. 2007. The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography: Earth and Environment 31 (5):471–79. doi: 10.1177/0309133307083294.
  • Deemer, B. R., and M. A. Holgerson. 2021. Drivers of methane flux differ between lakes and reservoirs, complicating global upscaling efforts. Journal of Geophysical Research: Biogeosciences 126 (4):e2019JG005600. doi: 10.1029/2019JG005600.
  • DelSontro, T., J. J. Beaulieu, and J. A. Downing. 2019. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters 3 (3):64–75. doi: 10.1002/lol2.10073.
  • DelSontro, T., L. Boutet, A. St‐Pierre, P. A. del Giorgio, and Y. T. Prairie. 2016. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnology and Oceanography 61 (Suppl. 1):S62–S77. doi: 10.1002/lno.10335.
  • Dhakal, S., J. C. Minx, F. L. Toth, A. Abdel-Aziz, M. J. Figueroa Meza, K. Hubacek, I. G. C. Jonckheere, Y. G. Kim, G. F. Nemet, S. Pachauri, et al. 2022. Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, and J. Malley. Cambridge, UK: Cambridge University Press. doi: 10.1017/9781009157926.004.
  • Engram, M., K. W. Anthony, F. J. Meyer, and G. Grosse. 2013. Synthetic aperture radar (SAR) backscatter response from methane ebullition bubbles trapped by thermokarst lake ice. Canadian Journal of Remote Sensing 38 (6):667–82. doi: 10.5589/m12-054.
  • Engram, M. J., K. Walter Anthony, and F. J. Meyer. 2020. ABoVE: SAR-based methane ebullition flux from lakes, five regions, Alaska, 2007–2010. ORNL DAAC, Oak Ridge, TN. doi: 10.3334/ORNLDAAC/1790.
  • Engram, M., K. M. Walter Anthony, T. Sachs, K. Kohnert, A. Serafimovich, G. Grosse, and F. J. Meyer. 2020. Remote sensing northern lake methane ebullition. Nature Climate Change 10 (6):511–17. doi: 10.1038/s41558-020-0762-8.
  • Fu, L. L., D. Alsdorf, R. Morrow, E. Rodriguez, and N. Mognard. 2012. SWOT: The surface water and ocean topography mission: Wide-swath altimetric elevation on Earth. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration.
  • Haslwanter, T. 2016. An introduction to statistics with Python with applications in the life sciences. Cham, Switzerland: Springer International.
  • Johnson, M. S., E. Matthews, J. Du, V. Genovese, and D. Bastviken. 2022. Methane emission from global lakes: New spatiotemporal data and observation‐driven modeling of methane dynamics indicates lower emissions. Journal of Geophysical Research: Biogeosciences 127 (7):e2022JG006793. doi: 10.1029/2022JG006793.
  • Johnston, S. E., R. G. Striegl, M. J. Bogard, M. M. Dornblaser, D. E. Butman, A. M. Kellerman, K. P. Wickland, D. C. Podgorski, and R. G. Spencer. 2020. Hydrologic connectivity determines dissolved organic matter biogeochemistry in northern high‐latitude lakes. Limnology and Oceanography 65 (8):1764–80. doi: 10.1002/lno.11417.
  • Julian, J. P., R. J. Davies-Colley, C. L. Gallegos, and T. V. Tran. 2013. Optical water quality of inland waters: A landscape perspective. Annals of the Association of American Geographers 103 (2):309–18. doi: 10.1080/00045608.2013.754658.
  • Juutinen, S., J. Alm, T. Larmola, J. T. Huttunen, M. Morero, P. J. Martikainen, and J. Silvola. 2003. Major implication of the littoral zone for methane release from boreal lakes. Global Biogeochemical Cycles 17 (4):105. doi: 10.1029/2003GB002105.
  • Kellogg, K., P. Hoffman, S. Standley, S. Shaffer, P. Rosen, W. Edelstein, C. Dunn, C. Baker, P. Barela, Y. Shen, et al. 2020. NASA-ISRO synthetic aperture radar (NISAR) mission. In 2020 IEEE Aerospace Conference, 1–21). Big Sky, MT: IEEE. doi: 10.1109/AERO47225.2020.9172638.
  • Kohnert, K., B. Juhls, S. Muster, S. Antonova, A. Serafimovich, S. Metzger, J. Hartmann, and T. Sachs. 2018. Toward understanding the contribution of waterbodies to the methane emissions of a permafrost landscape on a regional scale—A case study from the Mackenzie delta, Canada. Global Change Biology 24 (9):3976–89. doi: 10.1111/gcb.14289.
  • Kuhn, C., and D. Butman. 2021. ABoVE: Lake growing season green surface reflectance trends, AK and Canada, 1984–2019. Oak Ridge, TN: ORNL DAAC. doi: 10.3334/ORNLDAAC/1866.
  • Kuhn, M. A., R. K. Varner, D. Bastviken, P. Crill, S. MacIntyre, M. Turetsky, K. Walter Anthony, A. D. McGuire, and D. Olefeldt. 2021. BAWLD-CH 4: A comprehensive dataset of methane fluxes from boreal and Arctic ecosystems. Earth System Science Data 13 (11):5151–89. doi: 10.5194/essd-13-5151-2021.
  • Kyzivat, E. D., L. C. Smith, F. Garcia‐Tigreros, C. Huang, C. Wang, T. Langhorst, J. V. Fayne, M. E. Harlan, Y. Ishitsuka, D. Feng, et al. 2022. The importance of lake emergent aquatic vegetation for estimating arctic‐boreal methane emissions. Journal of Geophysical Research: Biogeosciences 127 (6):e2021JG006635. doi: 10.1029/2021JG006635.
  • Kyzivat, E. D., L. C. Smith, L. H. Pitcher, J. V. Fayne, S. W. Cooley, M. G. Cooper, S. N. Topp, T. Langhorst, M. E. Harlan, C. Horvat, et al. 2019. A high-resolution airborne color-infrared camera water mask for the NASA ABoVE campaign. Remote Sensing 11 (18):2163. doi: 10.3390/rs11182163.
  • Lu, X., D. J. Jacob, Y. Zhang, J. D. Maasakkers, M. P. Sulprizio, L. Shen, Z. Qu, T. R. Scarpelli, H. Nesser, R. M. Yantosca, et al. 2021. Global methane budget and trend, 2010–2017: Complementarity of inverse analyses using in situ (GLOBALVIEWplus CH 4 ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics 21 (6):4637–57. doi: 10.5194/acp-21-4637-2021.
  • Ludwig, S. M., S. M. Natali, P. J. Mann, J. D. Schade, R. M. Holmes, M. Powell, G. Fiske, and R. Commane. 2022. Using machine learning to predict inland aquatic CO2 and CH4 concentrations and the effects of wildfires in the Yukon-Kuskokwim Delta, Alaska. Global Biogeochemical Cycles 36 (4):e2021GB007146. doi: 10.1029/2021GB007146.
  • Matthews, E., M. S. Johnson, V. Genovese, J. Du, and D. Bastviken. 2020. Methane emission from high latitude lakes: Methane-centric lake classification and satellite-driven annual cycle of emissions. Scientific Reports 10 (1):12465. doi: 10.1038/s41598-020-68246-1.
  • McGuire, A. D., L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, and N. Roulet. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs 79 (4):523–55. doi: 10.1890/08-2025.1.
  • Messager, M. L., B. Lehner, G. Grill, I. Nedeva, and O. Schmitt. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications 7 (1):13603. doi: 10.1038/ncomms13603.
  • Murakami, D., B. Lu, P. Harris, C. Brunsdon, M. Charlton, T. Nakaya, and D. A. Griffith. 2019. The importance of scale in spatially varying coefficient modeling. Annals of the American Association of Geographers 109 (1):50–70. doi: 10.1080/24694452.2018.1462691.
  • Muster, S., K. Roth, M. Langer, S. Lange, F. Cresto Aleina, A. Bartsch, A. Morgenstern, G. Grosse, B. Jones, A. B. K. Sannel, et al. 2017. PeRL: A circum-Arctic permafrost region pond and lake database. Earth System Science Data 9 (1):317–48. doi: 10.5194/essd-9-317-2017.
  • Negandhi, K., I. Laurion, M. J. Whiticar, P. E. Galand, X. Xu, and C. Lovejoy. 2013. Small thaw ponds: An unaccounted source of methane in the Canadian High Arctic. PLoS ONE 8 (11):e78204. doi: 10.1371/journal.pone.0078204.
  • Olefeldt, D., M. Hovemyr, M. A. Kuhn, D. Bastviken, T. J. Bohn, J. Connolly, P. Crill, E. S. Euskirchen, S. A. Finkelstein, H. Genet, et al. 2021. The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth System Science Data 13 (11):5127–49. doi: 10.5194/essd-13-5127-2021.
  • Pastick, N. J., M. T. Jorgenson, B. K. Wylie, S. J. Nield, K. D. Johnson, and A. O. Finley. 2015. Distribution of near-surface permafrost in Alaska: Estimates of present and future conditions. Remote Sensing of Environment 168:301–15. doi: 10.1016/j.rse.2015.07.019.
  • Poggio, L., L. M. De Sousa, N. H. Batjes, G. Heuvelink, B. Kempen, E. Ribeiro, and D. Rossiter. 2021. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL 7 (1):217–40. doi: 10.5194/soil-7-217-2021.
  • Praetzel, L. S. E., M. Schmiedeskamp, and K. H. Knorr. 2021. Temperature and sediment properties drive spatiotemporal variability of methane ebullition in a small and shallow temperate lake. Limnology and Oceanography 66 (7):2598–2610. doi: 10.1002/lno.11775.
  • Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3 (1):168. doi: 10.1038/s43247-022-00498-3.
  • Root, E. D. 2012. Moving neighborhoods and health research forward: Using geographic methods to examine the role of spatial scale in neighborhood effects on health. Annals of the Association of American Geographers 102 (5):986–95. doi: 10.1080/00045608.2012.659621.
  • Sachdeva, M., and A. S. Fotheringham. 2023. A geographical perspective on Simpson’s Paradox. Journal of Spatial Information Science 26 (26):1–25. doi: 10.5311/JOSIS.2023.26.212.
  • Sanches, L. F., B. Guenet, C. C. Marinho, N. Barros, and F. de Assis Esteves. 2019. Global regulation of methane emission from natural lakes. Scientific Reports 9 (1):255. doi: 10.1038/s41598-018-36519-5.
  • Saunois, M., A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, et al. 2020. The global methane budget 2000–2017. Earth System Science Data 12 (3):1561–1623. doi: 10.5194/essd-12-1561-2020.
  • Seekell, D., B. B. Cael, and P. Byström. 2022. Problems with the Shoreline Development Index—A widely used metric of lake shape. Geophysical Research Letters 49 (10):e98499. doi: 10.1029/2022GL098499.
  • Seekell, D., B. Cael, S. Norman, and P. Byström. 2021. Patterns and variation of littoral habitat size among lakes. Geophysical Research Letters 48 (20):e2021GL095046. doi: 10.1029/2021GL095046.
  • Sepulveda-Jauregui, A., K. M. Walter Anthony, K. Martinez-Cruz, S. Greene, and F. Thalasso. 2015. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12 (11):3197–3223. doi: 10.5194/bg-12-3197-2015.
  • Smith, L. C. 2002. Emerging applications of Interferometric Synthetic Aperture Radar (InSAR) in geomorphology and hydrology. Annals of the Association of American Geographers 92 (3):385–98. doi: 10.1111/1467-8306.00295.
  • Smith, L. C., Y. Sheng, G. M. MacDonald, and L. D. Hinzman. 2005. Disappearing arctic lakes. Science 308 (5727):1429. doi: 10.1126/science.1108142.
  • Stackpoole, S. M., D. E. Butman, D. W. Clow, K. L. Verdin, B. V. Gaglioti, H. Genet, and R. G. Striegl. 2017. Inland waters and their role in the carbon cycle of Alaska. Ecological Applications 27 (5):1403–20. doi: 10.1002/eap.1552.
  • Thornton, M. M., R. Shrestha, Y. Wei, P. E. Thornton, S. Kao, and B. E. Wilson. 2020. Daymet: Daily surface weather data on a 1-km grid for North America, version 4. ORNL DAAC, Oak Ridge, TN. doi: 10.3334/ORNLDAAC/1840.
  • Walter, K. M., L. C. Smith, and S. F. Chapin. 2007. Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences 365 (1856):1657–76. doi: 10.1098/rsta.2007.2036.
  • Walter Anthony, K., R. Daanen, P. Anthony, T. Schneider von Deimling, C. L. Ping, J. P. Chanton, and G. Grosse. 2016. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience 9 (9):679–82. doi: 10.1038/ngeo2795.
  • Walter Anthony, K. M., P. Lindgren, P. Hanke, M. Engram, P. Anthony, R. P. Daanen, A. Bondurant, A. K. Liljedahl, J. Lenz, G. Grosse, et al. 2021. Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environmental Research Letters 16 (3):035010. doi: 10.1088/1748-9326/abc848.
  • Wang, G., X. Xia, S. Liu, L. Zhang, S. Zhang, J. Wang, N. Xi, and Q. Zhang. 2021. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions. Water Research 189:116654. doi: 10.1016/j.watres.2020.116654.
  • Wang, J. A., D. Sulla-Menashe, C. E. Woodcock, O. Sonnentag, R. F. Keeling, and M. A. Friedl. 2019. ABoVE: Landsat-derived annual dominant land cover across ABoVE core domain, 1984–2014. Oak Ridge, TN: ORNL DAAC. doi: 10.3334/ORNLDAAC/1691.
  • Wik, M., J. E. Johnson, P. M. Crill, J. P. DeStasio, L. Erickson, M. J. Halloran, M. F. Fahnestock, M. K. Crawford, S. C. Phillips, and R. K. Varner. 2018. Sediment characteristics and methane ebullition in three subarctic lakes. Journal of Geophysical Research: Biogeosciences 123 (8):2399–2411. doi: 10.1029/2017JG004298.
  • Wik, M., R. K. Varner, K. W. Anthony, S. MacIntyre, and D. Bastviken. 2016. Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience 9 (2):99–105. doi: 10.1038/ngeo2578.
  • Xu, J., and C. Jin. 2019. Exploring spatiotemporal heterogeneity in online travel searches: A local spatial model approach. Geografisk Tidsskrift-Danish Journal of Geography 119 (2):146–62. doi: 10.1080/00167223.2019.1601575.
  • Yvon-Durocher, G., A. P. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, N. Thanh-Duc, and P. A. Del Giorgio. 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507 (7493):488–91. doi: 10.1038/nature13164.
  • Zhou, Y., K. Song, R. Han, S. Riya, X. Xu, S. Yeerken, S. Geng, Y. Ma, and A. Terada. 2020. Nonlinear response of methane release to increased trophic state levels coupled with microbial processes in shallow lakes. Environmental Pollution 265 (Pt. B):114919. doi: 10.1016/j.envpol.2020.114919.