2,599
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A first step in finite-element simulation of a grasping task

, &

References

  • Robert A, Roth S, Chamoret D, et al. Functional design method for improving safety and ergonomics of mechanical products. J Biomed Sci Eng. 2012; 5:457–468.
  • Bae S, Armstrong TJ. A finger motion model for reach and grasp. Int J Ind Ergonom. 2011;41:79–89.
  • Bullock IM, Borras J, Dollar AM, Assessing assumptions in kinematic hand models: a review. The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Roma, Italy: IEEE; 2012.
  • Cobos S, Ferre M, Uran MAS, et al. Efficient human hand kinematics for manipulation tasks. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference, Nice, France; 2008. p. 2246–2251.
  • Cui T, Xiao J, Song A. Simulation of grasping deformable objects with a virtual human hand. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France; 2008. p. 3965–3970.
  • Fok KS, Chou SM. Development of a finger biomechanical model and its considerations. J Biomech. 2010; 43:701–713.
  • Sancho Bru JL, Mora MC, León BE, et al. Grasp modelling with a biomechanical model of the hand. Comput Methods Biomech Biomed Engin. 2014;17:297–310.
  • Yasumuro Y. Three-dimensional modeling of the human hand with motion constraints. Image Vision Comput. 1999;17:149–156.
  • Anderson DD, Daniel TE. A contact-coupled finite element analysis of the radiocarpal joint. Semin Arthroplasty. 1995;6:30–36.
  • Anderson DD, Deshpande BR, Daniel TE, Baratz ME. A three-dimensional finite element model of the radiocarpal joint: distal radius fracture step-off and stress transfer. Iowa Orthop J. 2005;25:108–117.
  • Ulrich D, van Rietbergen B, Laib A, Ruegsegger P. Load transfer analysis of the distal radius from in-vivo high-resolution CT-imaging. J Biomech. 1999;32:821–828.
  • Oda M, Hashizume H, Miyake T, et al. A stress distribution analysis of a ceramic lunate replacement for Kienbock's disease. J Hand Surg-Brit Eur. 2000;25:492–498.
  • Ledoux P, Lamblin D, Targowski R. Modifications to the mechanical behavior of the wrist after fracture of the scaphoid. Modeling by finite element analysis. Acta Orthopaedica Belgica. 2001;67:236–241.
  • Ledoux P, Lamblin D, Wuilbaut A, Schuind F. A finite element analysis of Kienbock's disease. J Hand Surg. 2008;3:286–291.
  • Carrigan SD, Whiteside RA, Pichora DR, Small CF. Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann Biomed Eng. 2003;31:718–725.
  • Tarnita D, Tarnita D, Popa D, Tarnita R. Analysis of stress and displacements of phalanx bone with the finite element method. Rom J Morphol Embryol. 2005;46:189–191.
  • Zadpoor AA. Finite element method analysis of human hand arm vibrations. Int J Sci Res. 2006;16:391–395.
  • Richmond BG. Biomechanics of phalangeal curvature. J Hum Evol. 2007;53:678–690.
  • Ezquerro F, Jimenez S, Perez A, et al. The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires: a finite element study. Med Eng Phys. 2007;29:652–660.
  • Guo X, Fan Y, Li ZM. Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: a finite element study. Med Eng Phys. 2009;31:188–194.
  • Wu JZ, Krajnak K, Welcome DE, Dong RG. Analysis of the biodynamic interaction between the fingertip and probe in the vibrotactile tests: the influences of the probe/fingertip contact orientation and static indentation. J Biomech. 2009;42:116–124.
  • Javanmardian A, HaghPanahi M. 3 dimensional finite element analysis of the human wrist joint without ligaments under compressive loads. In: Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME2010); Isfahan, Iran; 2010.
  • Gíslason MK, Stansfield B, Nash DH. Finite element model creation and stability considerations of complex biological articulation: the human wrist joint. Med Eng Phys. 2010;32:523–531.
  • Chamoret D, Roth S, Feng ZQ, et al. A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object. Comput Methods Biomech Biomed Eng. 2013;16:130–140.
  • Chamoret D, Peyraut F, Gomes S, Feng ZQ. Finite element approach applied to human digital model for biomechanical modeling. Int J Interact Des Manufact. 2010;4:75–82.
  • Ciocarlie M, Miller A, Allen P, Grasp analysis using deformable fingers. IEEE International Conference on Intelligent Robots and Systems. 2005;4122–4128.
  • Han J, Nishiyama S, Yamazaki K, Itoh R. Ergonomic design of beverage can lift tabs based on numerical evaluations of fingertip discomfort. Appl Ergonom. 2008;39:150–157.
  • Namima K, Wang Z, Hirai S, Simulation of soft fingertip deformation under contact and rolling constraints using FEM and CSM. In: Proceedings of the 2009 international conference on Robotics and biomimetics. IEEE Press: Piscataway, NJ, USA; 2009. p. 1585–1590.
  • Shao F, Childs THC, Henson B. Developing an artificial fingertip with human friction properties. Tribol Int. 2009;42:1575–1581.
  • Shao F, Childs THC, Barnes CJ, Henson B. Finite element simulations of static and sliding contact between a human fingertip and textured surfaces. Tribol Int. 2010;43:2308–2316.
  • Wagner MB, Gerling GJ, Scanlon J. Validation of a 3-D finite element human fingerpad model composed of anatomically accurate tissue layers. Joint Eurohaptics Conf Symp Haptic Interfaces Virtual Environ Teleoper Syst. 2008; 101–105.
  • Verheij R, Brenner E, Smeets JB. Grasping kinematics from the perspective of the individual digits: a modelling study. PLoS One. 2012;7:e33150.
  • Prachyabrued M, Borst CW. Virtual grasp release method and evaluation. Int J Hum Comput Stud. 2012;70:828–848.
  • Chamoret D, Saillard P, Rassineux A, Bergheau JM. New smoothing procedures in contact mechanics. J Comput Appl Math. 2004;168:107–116.
  • Feng ZQ. Some test examples of 2D and 3D contact problems involving coulomb friction and large slip. Math Comput Model. 1998;28:469–477.
  • Buchanan D, Ural A. Finite element modeling of the influence of hand position and bone properties on the colles' fracture load during a fall. J Biomech Eng. 2010;132:081007.
  • Kemper AR, McNally C, Kennedy EA, et al. Material properties of human rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J. 2005;49:199–230.
  • Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials. 1997;18:1325–1330.
  • Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.
  • Kumaresan S, Yoganandan N, Pintar FA. Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech. 1998;31:371–376.
  • Borst CW, Indugula AP. A spring model for whole-hand virtual grasping. Presence Teleoper Virtual Environ. 2006;15:47–61.
  • Dallard J, Merlhiot X, Duprey S, et al. Fingertip finite element modelling on choosing the right material property. Comput Methods Biomech Biomed Eng. 2014;17:30–31.
  • Ta AT, Labed N, Holweck F, et al. A new invariant-based method for building biomechanical behavior laws – application to an anisotropic hyperelastic material with two fiber families. Int J Solids Struct. 2013;50:2251–2258.