3,060
Views
0
CrossRef citations to date
0
Altmetric
Innovation in Biomedical Science and Engineering

Design of a new haptic device and experiments in minimally invasive surgical robot

, , , &

References

  • Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Trans Robot Automat. 2003;19:765–781.
  • Palep JH. Robotic assisted minimally invasive surgery. J Min Access Surg. 2009;5:1.
  • Hagn U, Ortmaier T, Konietschke R, et al. Telemanipulator for remote minimally invasive surgery. IEEE Robot Automat Mag. 2008;15:28–38.
  • WangShi WY, Andrew A, et al. Experimental analysis of robot-assisted needle insertion into porcine liver. Bio-Med Mater Eng. 2015;26:s375–s380.
  • Wang W, Zhang P, Shi Y, et al. Design and compatibility evaluation of magnetic resonance imaging-guided needle insertion system. j Med Imaging Hlth Inform. 2015;5:1963–1967.
  • Gomes P. Surgical robotics: reviewing the past, analysing the present, imagining the future. Pergamon Press, Inc. 2011;27: 261–266.
  • Beasley RA. Medical robots: current systems and research directions. J Robot. 2012;2012. 10.1155/2012/401613
  • Avgousti S, Christoforou EG, Panayides AS, et al. Medical telerobotic systems: current status and future trends. Biomed Eng Online. 2016;15:96.
  • Hannaford B, Rosen J, Friedman DW, et al. Raven-II: an open platform for surgical robotics research. IEEE Trans Bio-Med Eng. 2013;60:954–959.
  • Hagn U, Konietschke R, Tobergte A, et al. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Cars. 2010;5:183–193.
  • Talasaz A, Trejos AL, Perreault S, et al. A dual-arm 7-degrees-of-freedom haptics-enabled teleoperation test bed for minimally invasive surgery. J Med Devices. 2014;8:041004.
  • Tobergte A, Helmer P, Hagn U, et al. The sigma.7 haptic interface for MiroSurge: A new bi-manual surgical console. 2011 IEEE International Conference on Intelligent Robots and Systems; 3023-3030; San Francisco, CA, USA; 2011.
  • Bassan H, Talasaz A, Patel RV. Design and characterization of a 7-DOF haptic interface for a minimally invasive surgery test-bed. 2009 IEEE International Conference on Intelligent Robots and Systems; 4098-4103; St. Louis, USA; 2009.
  • Tholey G, Desai JP. A general-purpose 7 DOF haptic device: applications toward robot-assisted surgery. IEEE/ASME Trans Mechatron. 2007;12:662–669.
  • Kuo CH, Dai JS, Dasgupta P. Kinematic design considerations for minimally invasive surgical robots: an overview. Int J Med Robotics Comput Assist Surg. 2012;8:127–145.
  • Baofeng LI, Hanxu SUN, Qingxuan JIA, et al. Calculation of space robot workspace by using Monte Carlo method. Spacecraft Eng. 2011;20:79–85.
  • Pan B, Qu X, Ai Y, et al. Master–slave real-time control strategy in Cartesian space for a novel surgical robot for minimally invasive surgery. Comput Assist Surg. 2016;21:69–77.
  • Kazanzidesf P, Chen Z, Deguet A, et al. An open-source research kit for the da Vinci® Surgical System. 2014 IEEE International Conference on Robotics and Automation; 6434-6439; HongKong, China; 2014.