82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mitochondrial genome rearrangements and phylogenomics of the Hymenoptera (Insecta) using an expanded taxon sample

ORCID Icon, ORCID Icon &
Received 27 Jun 2023, Accepted 16 Apr 2024, Published online: 16 May 2024

References

  • Abascal F, Zardoya R, Telford MJ. 2010. Translatorx: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38(Web Server Issue):W7–W13. doi: 10.1093/nar/gkq291.
  • Aberer AJ, Krompass D, Stamatakis A. 2013. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol. 62(1):162–166. doi: 10.1093/sysbio/sys078.
  • Aguiar AP, Deans AR, Engel MS, Forshage M, Huber JT, Jennings JT, Johnson NF, Lelej AS, Longino JT, Lohrmann V. 2013. Order Hymenoptera. In: Zhang Z-Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Vol. 3703. Auckland: Magnolia Press; p. 51–62.
  • Andrews S. 2010. Babraham Bioinformatics – fastqc: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  • Austin A, Dowton M. 2000. Hymenoptera: evolution, biodiversity and biological control: evolution, biodiversity and biological control. Melbourne: Csiro Publishing.
  • Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, et al. 2013. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol. 69(2):352–364. doi: 10.1016/j.ympev.2013.05.002.
  • Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M. 2007. Crex: inferring genomic rearrangements based on common intervals. Bioinformatics. 23(21):2957–2958. doi: 10.1093/bioinformatics/btm468.
  • Black W, Roehrdanz RL. 1998. Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Mol Biol Evol. 15(12):1772–1785. doi: 10.1093/oxfordjournals.molbev.a025903.
  • Bossert S, Murray EA, Almeida EA, Brady SG, Blaimer BB, Danforth BN. 2019. Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol Phylogenet Evol. 130:121–131. doi: 10.1016/j.ympev.2018.10.012.
  • Branstetter MG, Childers AK, Cox-Foster D, Hopper KR, Kapheim KM, Toth AL, Worley KC. 2018. Genomes of the Hymenoptera. Curr Opin Insect Sci. 25:65–75. doi: 10.1016/j.cois.2017.11.008.
  • Branstetter MG, Danforth BN, Pitts JP, Faircloth BC, Ward PS, Buffington ML, Gates MW, Kula RR, Brady SG. 2017. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr Biol. 27(7):1019–1025. doi: 10.1016/j.cub.2017.03.027.
  • Braun EL, Cracraft J, Houde P. 2019. Resolving the avian tree of life from top to bottom: the promise and potential boundaries of the phylogenomic era. In: Kraus RH, editor. Avian genomics in ecology and evolution: from the lab into the wild. New York (NY): Springer; p. 151–210.
  • Brothers DJ, Carpenter JM. 1993. Phylogeny of Aculeata: Chrysidoidea and Vespoidea (Hymenoptera). J Hymenopt Res. 2:227–304.
  • Brothers DJ, Lelej AS. 2017. Phylogeny and higher classification of Mutillidae (Hymenoptera) based on morphological reanalyses. J Hymenopt Res. 60(1):1–97. doi: 10.3897/jhr.60.20091.
  • Brothers DJ. 1999. Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea). Zool Scripta. 28(1–2):233–250. doi: 10.1046/j.1463-6409.1999.00003.x.
  • Cameron SL, Dowton M, Castro LR, Ruberu K, Whiting MF, Austin AD, Diement K, Stevens J. 2008. Mitochondrial genome organization and phylogeny of two vespid wasps. Genome. 51(10):800–808. doi: 10.1139/G08-066.
  • Cameron SL, Johnson KP, Whiting MF. 2007. The mitochondrial genome of the screamer louse Bothriometopus (Phthiraptera: Ischnocera): effects of extensive gene rearrangements on the evolution of the genome. J Mol Evol. 65(5):589–604. doi: 10.1007/s00239-007-9042-8.
  • Cameron SL. 2014a. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst Entomol. 39(3):400–411. doi: 10.1111/syen.12071.
  • Cameron SL. 2014b. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 59(1):95–117. doi: 10.1146/annurev-ento-011613-162007.
  • Campbell N, Barker SC. 1998. An unprecedented major rearrangement in an arthropod mitochondrial genome. Mol Biol Evol. 15(12):1786–1787. doi: 10.1093/oxfordjournals.molbev.a025904.
  • Carpenter JM. 1999. Towards simultaneous analysis of morphological and molecular data in hymenoptera. Zool Scripta. 28(1–2):251–260. doi: 10.1046/j.1463-6409.1999.00009.x.
  • Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17(4):540–552. doi: 10.1093/oxfordjournals.molbev.a026334.
  • Castro LR, Ruberu K, Dowton M. 2006. Mitochondrial genomes of Vanhornia eucnemidarum (Apocrita: Vanhorniidae) and Primeuchroeus spp. (Aculeata: Chrysididae): evidence of rearranged mitochondrial genomes within the Apocrita (Insecta: Hymenoptera). Genome. 49(7):752–766. doi: 10.1139/g06-030.
  • Chen X. 2004. Fauna Sinica, Insecta. Vol. 37. Hymenoptera. Cynipidae Part Two. Beijing: Science Press.
  • Covacin C, Shao R, Cameron S, Barker S. 2006. Extraordinary number of gene rearrangements in the mitochondrial genomes of lice (Phthiraptera: Insecta). Insect Mol Biol. 15(1):63–68. doi: 10.1111/j.1365-2583.2005.00608.x.
  • Danforth BN, Sipes S, Fang J, Brady SG. 2006. The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci U S A. 103(41):15118–15123. doi: 10.1073/pnas.0604033103.
  • Debevec AH, Cardinal S, Danforth BN. 2012. Identifying the sister group to the bees: a molecular phylogeny of aculeata with an emphasis on the superfamily Apoidea. Zool Scripta. 41(5):527–535. doi: 10.1111/j.1463-6409.2012.00549.x.
  • Dowton M, Austin AD. 1994. Molecular phylogeny of the insect order hymenoptera: Apocritan relationships. Proc Natl Acad Sci U S A. 91(21):9911–9915. doi: 10.1073/pnas.91.21.9911.
  • Dowton M, Cameron SL, Austin AD, Whiting MF. 2009. Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the hymenoptera – a lineage with both rapidly and slowly evolving mitochondrial genomes. Mol Phylogenet Evol. 52(2):512–519. doi: 10.1016/j.ympev.2009.04.001.
  • Dowton M, Castro L, Austin A. 2002. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome morphology’. Invert Syst. 16(3):345–356. doi: 10.1071/IS02003.
  • Feng Z, Wu Y, Yang C, Gu X, Wilson JJ, Li H, Cai W, Yang H, Song F. 2020. Evolution of tRNA gene rearrangement in the mitochondrial genome of ichneumonoid wasps (Hymenoptera: Ichneumonoidea). Int J Biol Macromol. 164:540–547. doi: 10.1016/j.ijbiomac.2020.07.149.
  • Gaston KJ. 1991. The magnitude of global insect species richness. Conserv Biol. 5(3):283–296. doi: 10.1111/j.1523-1739.1991.tb00140.x.
  • Gillett CP, Crampton-Platt A, Timmermans MJ, Jordal BH, Emerson BC, Vogler AP. 2014. Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Mol Biol Evol. 31(8):2223–2237. doi: 10.1093/molbev/msu154.
  • Goloboff PA, Claudia AS. 2015. Identifying unstable taxa: efficient implementation of triplet-based measures of stability, and comparison with Phyutility and RogueNaRok. Mol Phylogenet Evol. 88:93–104. doi: 10.1016/j.ympev.2015.04.003.
  • Gong S, Xu Y, Xu S, Liang Y, Tian L, Cai W, Li H, Song F. 2022. The complete mitochondrial genome of the chicken body louse, Menacanthus cornutus, and evolutionary patterns of extensive gene rearrangements in the mitochondrial genomes of Amblycera (Psocodea: Phthiraptera). Genes. 13(3):522. doi: 10.3390/genes13030522.
  • Grimaldi D, Engel M. 2005. Evolution of the insects. New York (NY): Cambridge University Press; xv + 755 pp.
  • Grissell EE. 1999. Hymenopteran biodiversity: some alien notions. Am Entomol. 45(4):235–244. doi: 10.1093/ae/45.4.235.
  • Hall T. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. Nucleic Acids Symp. 41:95–98.
  • He J, Chen X, Ma Y. 1996. Economic Insect Fauna of China. Vol. 51. Hymenoptera. Ichneumonidae. Beijing: Science Press.
  • He J, Chen X, Ma Y. 2000. Fauna Sinica, Insecta. Vol. 18. Hymenoptera, Cynipidae Part One. Beijing: Science Press.
  • Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S, Dowling AP, Murray D, Munro J, Wheeler WC, Schiff N, et al. 2011. Evolution of the hymenopteran megaradiation. Mol Phylogenet Evol. 60(1):73–88. doi: 10.1016/j.ympev.2011.04.003.
  • Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS. 2013. Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Curr Biol. 23(20):2058–2062. doi: 10.1016/j.cub.2013.08.050.
  • Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. 2017. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587–589. doi: 10.1038/nmeth.4285.
  • Katoh K, Standley DM. 2013. Mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780. doi: 10.1093/molbev/mst010.
  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649. doi: 10.1093/bioinformatics/bts199.
  • Kilpert F, Held C, Podsiadlowski L. 2012. Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Mol Phylogenet Evol. 64(1):106–117. doi: 10.1016/j.ympev.2012.03.013.
  • Kilpert F, Podsiadlowski L. 2006. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics. 7(1):241. doi: 10.1186/1471-2164-7-241.
  • Kim MJ, Kim I, Cameron SL. 2020. How well do multispecies coalescent methods perform with mitochondrial genomic data? A case study of butterflies and moths (Insecta: Lepidoptera). Syst Entomol. 45(4):857–873. doi: 10.1111/syen.12431.
  • Koenen EJ, Ojeda DI, Steeves R, Migliore J, Bakker FT, Wieringa JJ, Kidner C, Hardy OJ, Pennington RT, Bruneau A, et al. 2020. Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies. New Phytol. 225(3):1355–1369. doi: 10.1111/nph.16290.
  • Kück P, Longo GC. 2014. Fasconcat-g: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool. 11(1):81. doi: 10.1186/s12983-014-0081-x.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. Mega x: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549. doi: 10.1093/molbev/msy096.
  • Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MP I: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 62(4):611–615.
  • Li H, Shao R, Song F, Zhou X, Yang Q, Li Z, Cai W. 2013. Mitochondrial genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): contrasting rates in mitochondrial gene rearrangement between major lineages of Psocodea. PLOS One. 8(4):e61685. doi: 10.1371/journal.pone.0061685.
  • Li T. 1985. Economic Insect Fauna of China, Vol. 30. Hymenoptera. Vespidae Superfamily. Beijing: Science Press.
  • Librado P, Rozas J. 2009. Dnasp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25(11):1451–1452. doi: 10.1093/bioinformatics/btp187.
  • Liu Q, He J, Song F, Tian L, Cai W, Li H. 2022. Positive correlation of the gene rearrangements and evolutionary rates in the mitochondrial genomes of thrips (Insecta: Thysanoptera). Insects. 13(7):585. doi: 10.3390/insects13070585.
  • Liu Y, Song F, Jiang P, Wilson JJ, Cai W, Li H. 2018. Compositional heterogeneity in true bug mitochondrial phylogenomics. Mol Phylogenet Evol. 118:135–144. doi: 10.1016/j.ympev.2017.09.025.
  • Ma Y, Zheng B, Zhu J, Achterberg C, Tang P, Chen X. 2019. The first two mitochondrial genomes of wood wasps (Hymenoptera: Symphyta): novel gene rearrangements and higher-level phylogeny of the basal hymenopterans. Int J Biol Macromol. 123:1189–1196. doi: 10.1016/j.ijbiomac.2018.11.017.
  • Malm T, Nyman T. 2015. Phylogeny of the symphytan grade of Hymenoptera: new pieces into the old jigsaw (fly) puzzle. Cladistics. 31(1):1–17. doi: 10.1111/cla.12069.
  • Mao M, Gibson T, Dowton M. 2014. Evolutionary dynamics of the mitochondrial genome in the Evaniomorpha (Hymenoptera) – a group with an intermediate rate of gene rearrangement. Genome Biol Evol. 6(7):1862–1874. doi: 10.1093/gbe/evu145.
  • Mao M, Gibson T, Dowton M. 2015. Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes. Mol Phylogenet Evol. 84:34–43. doi: 10.1016/j.ympev.2014.12.009.
  • Michez D, Patiny S, Danforth BN. 2009. Phylogeny of the bee family Melittidae (Hymenoptera: Anthophila) based on combined molecular and morphological data. Syst Entomol. 34(3):574–597. doi: 10.1111/j.1365-3113.2009.00479.x.
  • Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 30(5):1188–1195. doi: 10.1093/molbev/mst024.
  • Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 2014. Astral: genome-scale coalescent-based species tree estimation. Bioinformatics. 30(17):i541–i548. doi: 10.1093/bioinformatics/btu462.
  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science. 346(6210):763–767. doi: 10.1126/science.1257570.
  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. Iq-tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274. doi: 10.1093/molbev/msu300.
  • Nie Y, Fu Y, Zhang Y, Deng Y, Wang W, Tu Y, Liu G. 2021. Highly rearranged mitochondrial genome in Falcolipeurus lice (Phthiraptera: Philopteridae) from endangered eagles. Parasites Vectors. 14(1):11. doi: 10.1186/s13071-021-04776-5.
  • Oliveira DC, Raychoudhury R, Lavrov DV, Werren JH. 2008. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol. 25(10):2167–2180. doi: 10.1093/molbev/msn159.
  • Patel RK, Jain M. 2012. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLOS One. 7(2):e30619. doi: 10.1371/journal.pone.0030619.
  • Peng Y, Leung HC, Yiu SM, Chin FY. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 28(11):1420–1428. doi: 10.1093/bioinformatics/bts174.
  • Perna NT, Kocher TD. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol. 41(3):353–358. doi: 10.1007/BF01215182.
  • Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R, et al. 2017. Evolutionary history of the Hymenoptera. Curr Biol. 27(7):1013–1018. doi: 10.1016/j.cub.2017.01.027.
  • Pilgrim EM, Von Dohlen CD, Pitts JP. 2008. Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zool Scripta. 37(5):539–560. doi: 10.1111/j.1463-6409.2008.00340.x.
  • Pitts JP, Wasbauer MS, Von Dohlen CD. 2006. Preliminary morphological analysis of relationships between the spider wasp subfamilies (Hymenoptera: Pompilidae): revisiting an old problem. Zool Scripta. 35(1):63–84. doi: 10.1111/j.1463-6409.2005.00217.x.
  • Podsiadlowski L, Bartolomaeus T. 2006. Major rearrangements characterize the mitochondrial genome of the isopod Idotea baltica (Crustacea: Peracarida). Mol Phylogenet Evol. 40(3):893–899. doi: 10.1016/j.ympev.2006.04.008.
  • Quicke DL, Basibuyuk HH, Rasnitsyn AP. 1999. Morphological, palaeontological and molecular aspects of ichneumonoid phylogeny (Hymenoptera, Insecta). Zool Scripta. 28(1–2):175–202. doi: 10.1046/j.1463-6409.1999.00005.x.
  • Quicke DL, Belshaw R. 1999. Incongruence between morphological data sets: an example from the evolution of endoparasitism among parasitic wasps (Hymenoptera: Braconidae). Syst Biol. 48(3):436–454. doi: 10.1080/106351599260094.
  • Rasnitsyn A. 1988. An outline of evolution of the hymenopterous insects (order Vespida). Orient Insects. 22(1):115–145. doi: 10.1080/00305316.1988.11835485.
  • Robertson PL. 1968. A morphological and functional study of the venom apparatus in representatives of some major groups of Hymenoptera. Aust J Zool. 16(1):133–166. doi: 10.1071/ZO9680133.
  • Romiguier J, Weyna A. 2020. Relaxation of purifying selection suggests low effective population size in eusocial Hymenoptera and solitary pollinating bees. Biorxiv Evol Biol. 1:1–20.
  • Ronquist F, Rasnitsyn AP, Roy A, Eriksson K, Lindgren M. 1999. Phylogeny of the Hymenoptera: a cladistic reanalysis of Rasnitsyn’s (1988) data. Zool Scripta. 28(1–2):13–50. doi: 10.1046/j.1463-6409.1999.00023.x.
  • Ronquist F. 1999. Phylogeny of the Hymenoptera (Insecta): the state of the art. Zool Scripta. 28(1–2):3–11. doi: 10.1046/j.1463-6409.1999.00019.x.
  • Rosenberg MS, Kumar S. 2003. Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference. Mol Biol Evol. 20(4):610–621. doi: 10.1093/molbev/msg067.
  • Schulmeister S, Wheeler WC, Carpenter JM. 2002. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics. 18(5):455–484. doi: 10.1016/S0748-3007(02)00100-7.
  • Schulmeister S. 2003. Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis. Biol J Linn Soc Lond. 79(2):245–275. doi: 10.1046/j.1095-8312.2003.00233.x.
  • Shao R, Barker SC. 2003. The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol. 20(3):362–370. doi: 10.1093/molbev/msg045.
  • Shao R, Campbell NJ, Barker SC. 2001. Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol Biol Evol. 18(5):858–865. doi: 10.1093/oxfordjournals.molbev.a003867.
  • Shao R, Campbell NJH, Schmidt ER, Barker SC. 2001. Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects. Mol Biol Evol. 18(9):1828–1832. doi: 10.1093/oxfordjournals.molbev.a003970.
  • Sharkey MJ, Carpenter JM, Vilhelmsen L, Heraty J, Liljeblad J, Dowling AP, Schulmeister S, Murray D, Deans AR, Ronquist F, et al. 2012. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics. 28(1):80–112. doi: 10.1111/j.1096-0031.2011.00366.x.
  • Sharkey MJ. 2007. Phylogeny and classification of Hymenoptera. Zootaxa. 1668(1):521–548. doi: 10.11646/zootaxa.1668.1.25.
  • Sheffield NC, Song H, Cameron SL, Whiting MF. 2009. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Syst Biol. 58(4):381–394. doi: 10.1093/sysbio/syp037.
  • Song N, Li H, Song F, Cai W. 2016. Molecular phylogeny of Polyneoptera (Insecta) inferred from expanded mitogenomic data. Sci Rep. 6(1):36175. doi: 10.1038/srep36175.
  • Song N, Zhang H, Zhao T. 2019. Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling. Mol Phylogenet Evol. 137:236–249. doi: 10.1016/j.ympev.2019.05.009.
  • Strimmer K, Von Haeseler A. 1997. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 94(13):6815–6819. doi: 10.1073/pnas.94.13.6815.
  • Tang P, Zhu J, Zheng B, Wei S, Sharkey M, Chen X, Vogler AP. 2019. Mitochondrial phylogenomics of the Hymenoptera. Mol Phylogenet Evol. 131:8–18. doi: 10.1016/j.ympev.2018.10.040.
  • Tihelka E, Cai C, Pisani D, Donoghue PC. 2020. Mitochondrial genomes illuminate the evolutionary history of the western honey bee (Apis mellifera). Sci Rep. 10(1):14515. doi: 10.1038/s41598-020-71393-0.
  • Timmermans MJTN, Barton C, Haran J, Ahrens D, Culverwell CL, Ollikainen OA, Dodsworth DS, Foster PG, Bocak L, Vogler AP. 2016. Family-level sampling of mitochondrial genomes in Coleoptera: compositional ­heterogeneity and phylogenetics. Genome Biol Evol. 8(1):161–175. doi: 10.1093/gbe/evv241.
  • Tyagi K, Chakraborty R, Cameron SL, Sweet AD, Chandra K, Kumar V. 2020. Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta). Sci Rep. 10(1):695. doi: 10.1038/s41598-020-57705-4.
  • Vilhelmsen L, Turrisi GF. 2011. Per arborem ad astra: morphological adaptations to exploiting the woody habitat in the early evolution of Hymenoptera. Arthropod Struct Dev. 40(1):2–20. doi: 10.1016/j.asd.2010.10.001.
  • Vilhelmsen L. 2001. Phylogeny and classification of the extant basal lineages of the Hymenoptera (Insecta). Zool J Linn Soc. 131(4):393–442. doi: 10.1006/zjls.2000.0255.
  • Vilhelmsen L. 2009. The phylogeny of lower Hymenoptera (Insecta), with a summary of the early evolutionary history of the order. J Zool Syst Evol Res. 35(2):49–70. doi: 10.1111/j.1439-0469.1997.tb00404.x.
  • Vilhelmsen L. 2015. Morphological phylogenetics of the Tenthredinidae (Insecta: Hymenoptera). Invert Syst. 29(2):164–190. doi: 10.1071/IS14056.
  • Wahis R, Ghahari H, Gadallah NS. 2014. An annotated catalogue of the Iranian Pompilidae (Hymenoptera: Vespoidea). Entomo Faun – Faun Entomol. 67:121–142.
  • Wei S, Shi M, He J, Sharkey M, Chen X. 2009. The complete mitochondrial genome of Diadegma semiclausum (Hymenoptera: Ichneumonidae) indicates extensive independent evolutionary events. Genome. 52(4):308–319. doi: 10.1139/g09-008.
  • Wei S, Shi M, Sharkey MJ, van Achterberg C, Chen X. 2010. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to holometabolous insects. BMC Genomics. 11(1):371. doi: 10.1186/1471-2164-11-371.
  • Wu Y, Yang H, Feng Z, Li B, Zhou W, Song F, Li H, Zhang L, Cai W. 2020. Novel gene rearrangement in the mitochondrial genome of Pachyneuron aphidis (Hymenoptera: Pteromalidae). Int J Biol Macromol. 149:1207–1212. doi: 10.1016/j.ijbiomac.2020.01.308.
  • Wu Y, Zhou Q. 1996. Economic Insect Fauna of China, Vol. 52. Hymenoptera. Sphecidae. Beijing: Science Press.
  • Wu Y. 2000. Fauna Sinica, Insecta. Vol. 20. Hymenoptera. Apidae, Apis. Beijing: Science Press.
  • Yoshizawa K, Johnson KP, Sweet AD, Yao I, Ferreira RL, Cameron SL. 2018. Mitochondrial phylogenomics and genome rearrangements in the barklice (Insecta: Psocodea). Mol Phylogenet Evol. 119:118–127. doi: 10.1016/j.ympev.2017.10.014.
  • Zaldivar-Riverón A, Mori M, Quicke DL. 2006. Systematics of the cyclostome subfamilies of braconid parasitic wasps (Hymenoptera: Ichneumonoidea): a simultaneous molecular and morphological Bayesian approach. Mol Phylogenet Evol. 38(1):130–145. doi: 10.1016/j.ympev.2005.08.006.
  • Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. Astral-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 19(Suppl. 6):153. doi: 10.1186/s12859-018-2129-y.
  • Zhang H, Yan L, Zhang G. 2015. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Hemiptera: Heteroptera) and phylogenetic implications. BMC Genomics. 16:460.
  • Zheng B, Cao L, Tang P, Achterberg K, Hoffmann AA, Chen H, Chen X, Wei S. 2018. Gene arrangement and sequence of mitochondrial genomes yield insights into the phylogeny and evolution of bees and sphecid wasps (Hymenoptera: Apoidea). Mol Phylogenet Evol. 124:1–9. doi: 10.1016/j.ympev.2018.02.028.
  • Zheng X, Cao L, Chen P, Chen X, Achterberg K, Hoffmann AA, Liu J, Wei S. 2021. Comparative mitogenomics and phylogenetics of the stinging wasps (Hymenoptera: Aculeata). Mol Phylogenet Evol. 159:107119. doi: 10.1016/j.ympev.2021.107119.
  • Zhou Y, Wu N. 2019. Catalog of animal models in Shennongjia. Beijing: Science Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.