136
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A modeling and optimization study by response surface methodology (RSM) on UO22+ ions adsorption using nano-MgO particles prepared with combustion synthesis

Pages 187-195 | Received 30 Dec 2017, Accepted 16 Jul 2018, Published online: 20 Sep 2018

References

  • Benedict, B.; Pigford, T. H.; Levi, H. W. Nuclear Chemical Engineering; McGraw-Hill: New York, 1981.
  • Xie, S.; Yang, J.; Chen, C.; Zhang, X.; Wang, Q.; Zhang, C. Study on Biosorption Kinetics and Thermodynamics of Uranium by Citrobacter freudii. J. Environ. Radioact. 2008, 99, 126–133.
  • Budnyak, T. M.; Strizhak, A. V.; Gładysz-Płaska, A.; Sternik, D.; Komarov, I. V.; Kołodyńska, D.; Majdan, M.; Tertykh, V. А. Silica with Immobilized Phosphinic Acid-Derivative for Uranium Extraction. J. Hazard. Mater. 2016, 314, 326–340.
  • U.S. EPA (U.S. Environmental Protection Agency). Basic Information about Radionuclides in Drinking Water. http://epa.gov.sci (2006).
  • Nazari, K.; Maragheh, M. G.; Rad, A. J. Studies on Extraction of Uranium from Phosphoric Acid Using PN-1200 Extractant. Hydrometallurgy 2004, 71, 371–377.
  • Liu, Y.; Liu, Y.; Cao, X.; Hua, R.; Wang, Y.; Pang, C.; Hua, M.; Li, X. Biosorption Studies of Uranium (VI) on Cross-Linked Chitosan: Isotherm, Kinetic and Thermodynamic Aspects. J. Radioanal. Nucl. Chem. 2011, 290, 231–239.
  • Agrawal, Y. K.; Shrivastav, P.; Menon, S. K. Solvent Extraction, Separation of Uranium (VI) with Crown Ether. Sep. Purif. Technol. 2000, 20, 177–183.
  • Barkat, M.; Nibou, D.; Amokrane, S.; Chegrouche, S.; Mellah, A. Uranium (VI) Adsorption on Synthesized 4A and P1 Zeolites: Equilibrium, Kinetic, and Thermodynamic Studies. C. R. Chim. 2015, 18, 261–269.
  • Nibou, D.; Khemaissia, S.; Amokrane, S.; Barkat, M.; Chegrouche, S.; Mellah, A. Removal of UO22+ onto Synthetic NaA Zeolite. Characterization, Equilibrium and Kinetic Studies. Chem. Eng. J. 2011, 172, 296–305.
  • Houhoune, F.; Nibou, D.; Chegrouche, S.; Menacer, S. Behaviour of Modified Hexadecyltrimethylammonium Bromide Bentonite toward Uranium Species. J. Environ. Chem. Eng. 2016, 4, 3459–3467.
  • Djamila, H.; Abdelhamid, M.; Djamel, N.; Sihem, K. Promising Enhancement in the Removal of Uranium Ions by Surface-Modified Activated Carbons: Kinetic and Equilibrium Studies. J. Environ. Eng. 2018, 144, 04018027. DOI: 04018027DOI: 10.1061/(ASCE)EE.1943-7870.0001349.
  • Kaynar, U. H.; Ayvacıklı, M.; Kaynar, S. C.; Hıcsonmez, U. Removal of Uranium(VI) from Aqueous Solutions Using Nanoporous ZnO Prepared with Microwave-Assisted Combustion Synthesis. J. Radioanal. Nucl. Chem. 2014, 299, 1469–1979.
  • Li, X. Q.; Elliott, D. W.; Zhang, W. X. Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Crit. Rev. Solid State Mater. Sci. 2006, 31, 111–122.
  • Beheshtian, J.; Peyghan, A. A.; Bagheri, Z. Adsorption and Dissociation of Cl2 Molecule on ZnO Nanocluster. Appl. Surf. Sci. 2012, 258, 8171.
  • Tiyan, J.; Xu, J.; Zhu, F. Application of Nanomaterials in Sample Preparation. J. Chromatogr. A 2013, 1300, 1–16.
  • Kaynar, U. H.; Ayvacıklı, M.; Hiçsonmez, U.; Kaynar, S. C. Removal of Thorium (IV) Ions from Aqueous Solution by a Novel Nanoporous ZnO: Isotherms, Kinetic and Thermodynamic Studies. J. Environ. Radioact. 2015, 150, 145–151.
  • Cai, Y.; Li, C.; Wu, D.; Wang, W.; Tan, F.; Wang, X.; Wong, P. K.; Qiao, X. Highly Active MgO Nanoparticles for Simultaneous Bacterial Inactivation and Heavy Metal Removal from Aqueous Solution. Chem. Eng. J. 2017, 312, 158–166.
  • Xiong, C.; Wang, W.; Tan, F.; Luo, F.; Chen, J.; Qiao, X. Investigation on the Efficiency and Mechanism of Cd(II) and Pb(II) Removal from Aqueous Solutions Using MgO Nanoparticles. J. Hazard. Mater. 2015, 299, 664–674.
  • Poullikkas, A. Cost-Benefit Analysis for the Use of Additives in Heavy Fuel Oil Fired Boilers. Energy Convers. Manage. 2004, 45, 1725–1734.
  • Guo, X. L.; Liu, Z. G.; Chen, X. Y.; Zhu, S. N.; Xiong, S. B.; Hu, W. S.; Lin, C. Y. Pulsed Laser Deposition of/MgO Bilayered Films on Si Wafer in Waveguide Form. J. Phys. D: Appl. Phys. 1996, 29, 1632–1635.
  • Li, Y. R.; Liang, Z.; Zhang, Y.; Zhu, J.; Jiang, S. W.; Wei, X. H. Growth Modes Transition Induced by Strain Relaxation in Epitaxial MgO Thin Films on SrTiO3 (001) Substrates. Thin Solid Films 2005, 489, 245–250.
  • Wang, W.; Qiao, X.; Chen, J.; Tan, F.; Li, H. Influence of Titanium Doping on the Structure and Morphology of MgO Prepared by Coprecipitation Method. Mater. Charact. 2009, 60, 858–862.
  • Wang, W.; Qiao, X.; Chen, J. The Role of Acetic Acid in Magnesium Oxide Preparation via Chemical Precipitation. J. Am. Ceram. Soc. 2008, 91, 1697–1699.
  • Wagner, G. W.; Bartram, P. W.; Koper, O.; Klabunde, K. J. Reactions of VX, GD, and HD with Nanosize MgO. J. Phys. Chem. B 1999, 103, 3225–3228.
  • Kaynar, U. H.; Kaynar, S. C. The Removal of Sr(II) by a Nanoparticles ZnO Prepared by Microwave-Assisted Ignition Reaction. CBU J. Sci. 2017, 13-1, 1–4.
  • Çınar, S.; Kaynar, U. H.; Aydemir, T.; Kaynar, S. Ç.; Ayvacıklı, M. An Efficient Removal of RB5 from Aqueous Solution by Adsorption onto Nano-ZnO/Chitosan Composite Beads. Int. J. Biol. Macromol. 2017, 96, 459–465.
  • Cojocaru, C.; Zakrzewska-Trznadel, G. Response Surface Modeling and Optimization of Copper Removal from Aqua Solutions Using Polymer Assisted Ultrafiltration. J. Membr. Sci. 2007, 298, 56–70.
  • Singh, K. P.; Gupta, S.; Singh, A. K.; Sinha, S. Optimizing Adsorption of Crystal Violet Dye from Water by Magnetic Nanocomposite Using Response Surface Modeling Approach. J. Hazard. Mater. 2011, 186, 1462–1473.
  • Arulkumar, M.; Sathishkumar, P.; Palvannan, T. Optimization of Orange G Dye Adsorption by Activated Carbon of Thespesia populnea Pods Using Response Surface Methodology. J. Hazard. Mater. 2011, 186, 827–834.
  • Houhoune, F.; Djamel, N.; Samira, A.; Mahfoud, B. Modelling and Adsorption Studies of Removal Uranium (VI) Ions on Synthesised Zeolite NaY. Desalin. Water Treat. 2013, 51, 5583–5591.
  • Alavi, M. A.; Morsali, A. Syntheses and Characterization of Mg(OH)2 and MgO Nanostructures by Ultrasonic Method. Ultrason. Sonochem. 2010, 17, 441–446.
  • Dhas, N. A.; Patil, K. C. Combustion Synthesis and Properties of the NASICON Family of Materials. J. Mater. Chem. 1995, 5, 1463–1468.
  • Nehru, L. C.; Swaminathan, V.; Sanjeeviraja, C. A New Large – Scale Synthesis of Magnesium Oxide Nanowires: Structural and Antibacterial Properties. Powder Technol. 2012, 226, 29–33.
  • Sharma, S.; Malik, A.; Satya, A. Application of Response Surface Methodology (RSM) for Optimization of Nutrient Supplementation for Cr (VI) Removal by Aspergillus Lentulus AML05. J. Hazard. Mater. 2009, 164, 1198–1204.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977.
  • Myers, R. H.; Montgomery, D. C. Response Surface Methodology, 2nd ed.; Wiley: New York, 2011; pp. 120–224.
  • Prakash, O.; Talat, M.; Hasan, S. H.; Pandey, R. K. Factorial Design for the Optimization of Enzymatic Detection of Cadmium in Aqueous Solution Using Immobilized Urease from Vegetable Waste. Bioresour. Technol. 2008, 99, 7565–7572.
  • Mishra, A.; Malik, A. Metal and Dye Removal Using Fungal Consortium from Mixed Waste Stream: Optimization and Validation. Ecol. Eng. 2014, 69, 226–231.
  • Balamurugan, S.; Ashna, L.; Parthiban, P. Synthesis of Nanocrystalline MgO Particles by Combustion Followed by Annealing Method Using Hexamine as a Fuel. J. Nanotechnol. 2014, 2014, 6–10.
  • Selvam, N. C. S.; Kumar, R. T.; Kennedy, L. J.; Vijaya, J. J. Comparative Study of Microwave and Conventional Methods for the Preparation and Optical Properties of Novel MgO-Micro and Nano-Structures. J. Alloys Compd. 2011, 509, 9809–9815.
  • Mageshwari, K.; Mali, S. S.; Sathyamoorthy, R.; Patil, P. S. Template-Free Synthesis of MgO Nanoparticles for Effective Photocatalytic Applications. Powder Technol. 2013, 249, 456–462.
  • Shakur, H. R.; Rezaee Ebrahim Saraee, K.; Abdi, M. R.; Azimi, G. A Novel PAN/NaX/ZnO Nanocomposite Absorbent: synthesis, Characterization, Removal of Uranium Anionic Species from Contaminated Water. J. Mater. Sci. 2016, 51, 9991–10004.
  • Kumar, R.; Chawla, J. Removal of Cadmium Ion from Water/Wastewater by Nano-Metal Oxides: A Review. Water Qual. Expo. Health 2014, 5, 215–226.
  • Hamzeh, Y.; Ashori, A.; Azadeh, E.; Abdulkhani, A. Removal of Acid Orange 7 and Remazol Black 5 Reactive Dyes from Aqueous Solutions Using a Novel Biosorbent. Mater. Sci. Eng. C 2012, 32, 1394–1400.
  • Tan, L.; Wang, J.; Liu, Q. Facile Preparation of Oxine Functionalized Magnetic Fe3O4 Particles for Enhanced Uranium (VI) Adsorption. Colloids Surf. A 2015, 466, 85–91.
  • Zidan, W. I.; Abo-Aly, M. M.; Elhefnawy, O. A.; Bakier, E. Batch and Column Studies on Uranium Adsorption by Amberlite XAD-4 Modified with Nano-Manganese Dioxide. J. Radioanal. Nucl. Chem. 2015, 304, 473–653.
  • Bryant, D. E.; Stewart, D. I.; Kee, T. P.; Barton, C. S. Development of a Functionalized Polymer-Coated Silica for the Removal of Uranium from Groundwater. Environ. Sci. Technol. 2003, 37, 4011–4016.
  • Anirudhan, T. S.; Deepa, J. R. Synthesis and Characterization of Multi-Carboxyl-Functionalized Nanocellulose/Nanobentonite Composite for the Adsorption of Uranium(VI) from Aqueous Solutions: Kinetic and Equilibrium Profiles. Chem. Eng. J. 2015, 273, 390–400.
  • Zhang, W.-L.; Zhang, Z.-B.; Cao, X.-H.; Ma, R.-C.; Liu, Y.-H. Uranium Adsorption Studies on Hydrothermal Carbon Produced by Chitosan Using Statistical Design Method. J. Radioanal. Nucl. Chem. 2014, 301, 197–205.
  • Fakhri, A.; Adami, S. Adsorption and Thermodynamic Study of Cephalosporins Antibiotics from Aqueous Solution onto MgO Nanoparticles. J. Taiwan Inst. Chem. E 2014, 45, 1001–1006.
  • Fakhri, A. Investigation of Mercury (II) Adsorption from Aqueous Solution onto Copper Oxide Nanoparticles: Optimization Using Response Surface Methodology. Process Saf. Environ. 2015, 93, 1–8.
  • Fakhri, A.; Behrouz, S. Comparison Studies of Adsorption Properties of MgO Nanoparticles and ZnO–MgO Nanocomposites for Linezolid Antibiotic Removal from Aqueous Solution Using Response Surface Methodology. Process Saf. Environ. 2015, 94, 37–43.
  • Al-Khateeb, L. A.; Obaid, A. Y.; Asiri, N. A.; Salam, M. A. Adsorption Behavior of Estrogenic Compounds on Carbon Nanotubes from Aqueous Solutions: Kinetic and Thermodynamic Studies. J. Ind. Eng. Chem. 2014, 20, 916–924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.