498
Views
47
CrossRef citations to date
0
Altmetric
Short Communication

In vitro cholinesterase enzymes inhibitory potential and in silico molecular docking studies of biogenic metal oxides nanoparticles

, , , , , & show all
Pages 441-448 | Received 25 Mar 2018, Accepted 02 Jan 2019, Published online: 01 Feb 2019

References

  • The, L. N. G8 Dementia Summit: A Chance for United Action. The Lancet. Neurology 2014, 13, 1.
  • Hebert, L. E.; Weuve, J.; Scherr, P. A.; Evans, D. A. Alzheimer Disease in the United States (2010–2050) Estimated Using the 2010 Census. Neurology. 2013, 80, 1778–1783. DOI:10.1212/WNL.0b013e31828726f5.
  • Norton, S.; Matthews, F. E.; Brayne, C. A Commentary on Studies Presenting Projections of the Future Prevalence of Dementia. BMC Public Health. 2013, 13, 1.
  • Alzheimer's Association. Alzheimer's Disease Facts and Figures. Alzheimer's Dement. 2016, 12, 459–509.
  • Mortimer, J. A.; Borenstein, A. R.; Gosche, K. M.; Snowdon, D. A. Very Early Detection of Alzheimer Neuropathology and the Role of Brain Reserve in Modifying Its Clinical Expression. J. Geriatric Psychiatry Neurol. 2005, 18, 218–223.
  • Nestor, P. J.; Scheltens, P.; Hodges, J. R. Advances in the Early Detection of Alzheimer's Disease. Nat. Med. 2004, 10, S34.
  • Howes, M.-J, R.; Fang, R.; Houghton, P. J. Effect of Chinese herbal medicine on Alzheimer's disease. In International Review of Neurobiology; Elsevier: Amsterdam, 2017, pp. 29–56.
  • Hadavi, D.; Poot, A. A. Biomaterials for the Treatment of Alzheimer's Disease. Front. Bioeng. Biotechnol. 2016, 4, 49.
  • Hardy, J.; Selkoe, D. J. The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics. Science. 2002, 297, 353–356.
  • Finder, V. H.; Glockshuber, R. Amyloid-Beta Aggregation. Neurodegener. Dis. 2007, 4, 13–27.
  • Bush, A. I. The Metal Theory of Alzheimer's Disease. JAD. 2013, 33, S277–S281. DOI:10.3233/JAD-2012-129011.
  • Sun, L.; Liu, S.; Zhou, X.; Wang, X.; Liu, R.; Wang, Q.; Wang, J. Inhibition of Protein Phosphatase 2A-and Protein Phosphatase 1-induced Tau Hyperphosphorylation and Impairment of Spatial Memory Retention in Rats. Neuroscience. 2003, 118, 1175–1182. DOI:10.1016/S0306-4522(02)00697-8.
  • Nazem, A.; Mansoori, G. A. Nanotechnology for Alzheimer's Disease Detection and Treatment. Insci. J. 2011, 1, 169–193. DOI:10.5640/insc.0104169.
  • Ovais, M.; Zia, N.; Ahmad, I.; Khalil, A. T.; Raza, A.; Ayaz, M.; Sadiq, A.; Ullah, F.; Shinwari, Z. K. Phyto-Therapeutic and Nanomedicinal Approaches to Cure Alzheimer’s Disease: Present Status and Future Opportunities. Front. Aging Neurosci. 2018, 10, 284, doi: 10.3389/fnagi.2018.00284
  • Rafii, M. S.; Aisen, P. S. Advances in Alzheimer’s Disease Drug Development. BMC Med. 2015, 13, 62.
  • Suganthy, N.; Ramkumar, V. S.; Pugazhendhi, A.; Benelli, G.; Archunan, G. Biogenic Synthesis of Gold Nanoparticles from Terminalia Arjuna Bark Extract: Assessment of Safety Aspects and Neuroprotective Potential via Antioxidant, Anticholinesterase, and Antiamyloidogenic Effects. Environ. Sci. Pollut. Res. 2017, 25(2):1–16.
  • Nellore, J.; Pauline, C.; Amarnath, K. Bacopa Monnieri Phytochemicals Mediated Synthesis of Platinum Nanoparticles and Its Neurorescue Effect on 1-Methyl 4-phenyl 1, 2, 3, 6 Tetrahydropyridine-induced Experimental Parkinsonism in Zebrafish. J. Neurodegener. Dis. 2013, 2013, 1. DOI:10.1155/2013/972391.
  • Nazıroğlu, M.; Muhamad, S.; Pecze, L. Nanoparticles as Potential Clinical Therapeutic Agents in Alzheimer’s Disease: Focus on Selenium Nanoparticles. Expert Rev. Clin. Pharmacol. 2017, 10, 773–782. DOI:10.1080/17512433.2017.1324781.
  • Zhang, J.; Zhou, X.; Yu, Q.; Yang, L.; Sun, D.; Zhou, Y.; Liu, J. Epigallocatechin-3-gallate (EGCG)-Stabilized Selenium Nanoparticles Coated with Tet-1 Peptide to Reduce Amyloid-β Aggregation and Cytotoxicity. ACS Appl. Mater. Interfaces 2014, 6, 8475–8487. DOI:10.1021/am501341u.
  • Mandal, S.; Debnath, K.; Jana, N. R.; Jana, N. R. Trehalose-Functionalized Gold Nanoparticle for Inhibiting Intracellular Protein Aggregation. Langmuir 2017, 33, 13996–14003. DOI:10.1021/acs.langmuir.7b02202.
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Jan, S. A.; Shinwari, Z. K.; Maaza, M. Bioinspired Synthesis of Pure Massicot Phase Lead Oxide Nanoparticles and Assessment of Their Biocompatibility, Cytotoxicity and In-Vitro Biological Properties. Arab. J. Chem. 2017. https://doi.org/10.1016/j.arabjc.2017.08.009
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Maaza, M. Physical Properties, Biological Applications and Biocompatibility Studies on Biosynthesized Single Phase Cobalt Oxide (Co3O4) Nanoparticles via Sageretia thea (Osbeck.). Arab. J. Chem. 2017. https://doi.org/10.1016/j.arabjc.2017.07.004
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Khamlich, S.; Maaza, M. Sageretia thea (Osbeck.) Mediated Synthesis of Zinc Oxide Nanoparticles and Its Biological Applications. Nanomedicine. 2017, 12, 1767–1789. DOI:10.2217/nnm-2017-0124.
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Hassan, D.; Maaza, M. Sageretia thea (Osbeck.) Modulated Biosynthesis of NiO Nanoparticles and Their In Vitro Pharmacognostic, Antioxidant and Cytotoxic Potential. Artif. Cells Nanomed. Biotechnol. 2018, 46, 838–852. DOI:10.1080/21691401.2017.1345928.
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Maaza, M. Biosynthesis of Iron Oxide (Fe2O3) Nanoparticles Via Aqueous Extracts of Sageretia thea (Osbeck.) and Their Pharmacognostic Properties. Green Chem. Lett. Rev. 2017, 10, 186–201. DOI:10.1080/17518253.2017.1339831.
  • Hassan, D.; Khalil, A. T.; Saleem, J.; Diallo, A.; Khamlich, S.; Shinwari, Z. K.; Maaza, M. Biosynthesis of Pure Hematite Phase Magnetic Iron Oxide Nanoparticles Using Floral Extracts of Callistemon viminalis (bottlebrush): Their Physical Properties and Novel Biological Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46(1):1–15. DOI:10.1080/21691401.2018.1434534.
  • Ellman, G. L.; Courtney, K. D.; Andres Jr., V.; Featherstone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology 1961, 7, 88–95. DOI:10.1016/0006-2952(61)90145-9.
  • Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M. A.; Ahmad, W.; Shah, M. R.; Imran, M.; Ahmad, S. Comparative Chemical Profiling, cholinesterase Inhibitions and anti-radicals Properties of Essential Oils from Polygonum hydropiper L.: A Preliminary Anti-Alzheimer’s Study. Lipids Health Dis. 2015, 14, 141.
  • Leach, A. R.; Shoichet, B. K.; Peishoff, C. E. Prediction of Protein − Ligand Interactions. Docking and Scoring: Successes and Gaps. J. Med. Chem. 2006, 49, 5851–5855. DOI:10.1021/jm060999m.
  • Thema, F.; Manikandan, E.; Dhlamini, M.; Maaza, M. Green Synthesis of ZnO Nanoparticles via Agathosma betulina Natural Extract. Mater. Lett. 2015, 161, 124–127. DOI:10.1016/j.matlet.2015.08.052.
  • Diallo, A.; Beye, A.; Doyle, T.; Park, E.; Maaza, M. Green Synthesis of Co3O4 Nanoparticles via Aspalathus linearis: Physical Properties. Green Chem. Lett. Rev. 2015, 8, 30–36. DOI:10.1080/17518253.2015.1082646.
  • Ovais, M.; Khalil, A. T.; Raza, A.; Khan, M. A.; Ahmad, I.; Islam, N. U.; Saravanan, M.; Ubaid, M. F.; Ali, M.; Shinwari, Z. K. Green Synthesis of Silver Nanoparticles via Plant Extracts: Beginning a New Era in Cancer Theranostics. Nanomedicine. 2016, 12, 3157–3177. DOI:10.2217/nnm-2016-0279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.