172
Views
2
CrossRef citations to date
0
Altmetric
Articles

Effect of annealing temperature on structural, optical and photocatalytic properties of α-Fe2O3 nanostructures

, &
Pages 477-485 | Received 13 Apr 2017, Accepted 02 Jan 2019, Published online: 09 Feb 2019

References

  • Qu, X.; Brame, J.; Li, Q.; Alvarez, P. J. J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 2013, 46, 834–843. DOI: 10.1021/ar300029v.
  • Chung, K. T.; Stevens, S. E., Jr.; Cerniglia, C. E. The Reduction of Azo Dyes by the Intestinal Microflora. Crit. Rev. Microbiol. 1992, 18, 175–190. DOI: 10.3109/10408419209114557.
  • Chung, K. T. The Significance of Azo-reduction in the Mutagenesis and Carcinogenesis of Azo Dyes. Mutat. Res. 1983, 114, 269–281. DOI: 10.1016/0165-1110(83)90035-0.
  • Brown, D.; Hamburger, B. The Degradation of Dyestuffs: Part III - Investigations of Their Ultimate Degradability. Chemosphere. 1987, 16, 1539–1553. DOI: 10.1016/0045-6535(87)90094-4.
  • Teja, A. S.; Koh, P.-Y. Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. DOI: 10.1016/j.pcrysgrow.2008.08.003.
  • Kim, J. Y.; Youn, D. H.; Kim, J. H.; Kim, H. G.; Lee, J. S. Nanostructure-preserved Hematite Thin Film for Efficient Solar Water Splitting. ACS Appl. Mater. Interfaces. 2015, 7, 14123–14129. DOI: 10.1021/acsami.5b03409.
  • Baumanis, C.; Bloh, J. Z.; Dillert, R.; Bahnemann, D. W. Hematite Photocatalysis: Dechlorination of 2,6-Dichloroindophenol and Oxidation of Water. J. Phys. Chem. C. 2011, 115, 25442–25450. DOI: 10.1021/jp210279r.
  • Wang, X.; Peng, K. Q.; Hu, Y.; Zhang, F. Q.; Hu, B.; Li, L.; Wang, M.; Meng, X. M.; Lee, S. T. Silicon/hematite Core/Shell Nanowire Array Decorated with Gold Nanoparticles for Unbiased Solar Water Oxidation. Nano Lett. 2014, 14, 18–23. DOI: 10.1021/nl402205f.
  • Pradhan, G. K.; Padhi, D. K.; Parida, K. M. Fabrication of α-Fe2O3 Nanorod/RGO Composite: A Novel Hybrid Photocatalyst for Phenol Degradation. ACS Appl. Mater. Interfaces. 2013, 5, 9101–9110. DOI: 10.1021/am402487h.
  • Yu, W.; Liu, H.; An, X. Novel Catalytic Properties of Supported Metal Nanoclusters. J. Mol. Catal. A Chem. 1998, 129, L9–L13. DOI: 10.1016/S1381-1169(97)00306-3.
  • Zhang, Z.; Hossain, M. F.; Takahashi, T. Self-assembled Hematite (α-Fe2O3) Nanotube Arraysfor Photoelectrocatalytic Degradation of Azo Dye under Simulated Solar Light Irradiation. Appl. Catal. B: Environ. 2010, 95, 423–429. DOI: 10.1016/j.apcatb.2010.01.022.
  • Zhou, X.; Yang, H.; Wang, C.; Mao, X.; Wang, Y.; Yang, Y.; Liu, G. Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-dimensional Iron Oxide Particles. J. Phys. Chem. C. 2010, 114, 17051–17061. DOI: 10.1021/jp103816e.
  • Wang, X.; Chen, X.; Gao, L.; Zheng, H.; Ji, M.; Tang, C.; Shen, T.; Zhang, Z. Synthesis of β-FeOOH and α-Fe2O3 Nanorods and Electrochemical Properties of β-FeOOH. J. Mater. Chem. 2004, 14, 905–907. DOI: 10.1039/B310722A.
  • Yu, J.; Yu, X.; Huang, B.; Zhang, X.; Dai, Y. Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres. Cryst. Growth Des. 2009, 9, 1474–1480. DOI: 10.1021/cg800941d.
  • Jiao, Y.; Liu, Y.; Yin, B. S.; Zhang, S. W.; Qu, F. Y.; Wu, X. Hybrid α-Fe2O3@NiO Heterostructures for Flexible and High Performance Supercapacitor Electrodes and Visible Light Driven Photocatalysts. Nano Energy. 2014, 10, 90–98. DOI: 10.1016/j.nanoen.2014.09.002.
  • Jia, C. J.; Sun, L. D.; Yan, Z. G.; You, L. P.; Luo, F.; Han, X. D.; Pang, Y. C.; Zhang, Z.; Yan, C. H. Single-crystalline Iron Oxide Nanotubes. Angew. Chem. Int. Ed. Engl. 2005, 44, 4328–4333. DOI: 10.1002/anie.200463038.
  • Su, X. Q.; Yan, B. The Synthesis and Luminescence of YPxV1−xO4:Dy3+ Microcrystalline Phosphors by In Situ Co-precipitation Composition of Hybrid Precursors. Mater. Chem. Phys. 2005, 93, 552–556. DOI: 10.1016/j.matchemphys.2005.04.016.
  • Li, S. Z.; Zhang, H.; Wu, J. B.; Ma, X. Y.; Yang, D. R. Shape-Control Fabrication and Characterization of the Airplane-like FeO(OH) and Fe2O3 Nanostructures. Cryst. Growth Des. 2006, 6, 351–353. DOI: 10.1021/cg0495835.
  • Cheng, X. L.; Jiang, J. S.; Jin, C. Y.; Lin, C. C.; Zeng, Y.; Zhang, Q. H. Cauliflower-like α-Fe2O3 Microstructures: Toluene-water Interface-assisted Synthesis, Characterization, and Applications in Wastewater Treatment and Visible-light Photocatalysis. Chem. Eng. J. 2014, 236, 139–148. DOI: 10.1016/j.cej.2013.09.089.
  • Umar, A.; Akhtar, M. S.; Dar, G. N.; Baskoutas, S. Enhanced Photocatalytic Degradation of Harmful Dye and Phenyl Hydrazine Chemical Sensing Using ZnO Nanourchins. Talanta. 2013, 116, 1060–1066. DOI: 10.1016/j.talanta.2013.08.026.
  • Hitkari, G.; Singh, S.; Pandey, G. Structural, Optical and Photocatalytic Study of ZnO and ZnO-ZnS Synthesized by Chemical Method. Nano Struct. Nano. Obj. 2017, 12, 1–9. DOI: 10.1016/j.nanoso.2017.08.007.
  • Jiao, Y.; Liu, Y.; Qu, F.; Umar, A.; Wu, X. Visible-light-driven Photocatalytic Properties of Simply Synthesized α-Iron (III) Oxide Nanourchins. J. Colloid Interface Sci. 2015, 451, 93–100. DOI: 10.1016/j.jcis.2015.03.055.
  • Lv, J.; Gong, W.; Huang, K.; Zhu, J.; Meng, F.; Song, X.; Sun, Z. Effect of Annealing Temperature on Photocatalytic Activity of ZnO Thin Films Prepared by Sol-gel Method. Superlattices Microstruct. 2011, 50, 98–106. DOI: 10.1016/j.spmi.2011.05.003.
  • Chen, C.; Yu, B.; Liu, J.; Dai, Q.; Zhu, Y. Investigation of ZnO Films on Si < 111> substrate Grown by Low Energy O+ assisted Pulse Laser Deposited Technology. Mater. Lett. 2007, 61, 2961–2964. DOI: 10.1016/j.matlet.2006.10.047.
  • Barick, K. C.; Singh, S.; Aslam, M.; Bahadur, D. Porosity and Photocatalytic Studies of Transition Metal Doped ZnO Nanoclusters. Microporous Mesoporous Mater. 2010, 134, 195–202. DOI: 10.1016/j.micromeso.2010.05.026.
  • Jubb, A. M.; Allen, H. C. Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films Produced by Vapor Deposition. ACS Appl. Mater. Interfaces. 2010, 2, 2804–2812. DOI: 10.1021/am1004943.
  • Pandey, G. Fe-EBT Chelate Complex: A Novel Mean for Growth of α-FeOOH and γ-Fe2O3 Nanostructures. Acta Metall. Sin. (Engl. Lett.) 2014, 27, 1127–1133. DOI: 10.1007/s40195-014-0141-4.
  • Sherman, D. M. Electronic Spectra of Fe3+ Oxides and Oxide Hydroxides in the Near IR to near UV. Amer. Mineralogist. 1985, 70, 1262–1269.
  • Hitkari, G.; Singh, S.; Pandey, G. Photoluminescence Behavior and Visible Light Photocatalytic Activity of ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 Nanocomposites. Trans. Nonferrous Met. Soc. China. 2018, 28, 1386–1396. DOI: 10.1016/S1003-6326(18)64777-6.
  • Zhang, X.; Qin, J.; Hao, R.; Wang, L.; Shen, X.; Yu, R.; Limpanart, S.; Ma, M.; Riping, R. Carbon-doped ZnO Nanostructures: Facile Synthesis and Visible Light Photocatalytic Applications. J. Phys. Chem. C. 2015, 119, 20544–20554. DOI: 10.1021/acs.jpcc.5b07116.
  • Haldar, K. K.; Sinha, G.; Lahtinen, J.; Patra, A. Hybrid Colloidal Au-CdSe Pentapod Heterostructures: Synthesis and Their Photocatalytic Properties. ACS Appl. Mater. Interfaces. 2012, 4, 6266–6272. DOI: 10.1021/am301859b.
  • Mitra, S.; Das, S.; Mandal, K.; Chaudhuri, S. Synthesis of a α-Fe2O3 Nanocrystal in Its Different Morphological Attributes: Growth Mechanism, Optical and Magnetic Properties. Nanotechnology. 2007, 18, 275608–275616. DOI: 10.1088/0957-4484/18/27/275608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.