102
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis, structure and magnetic property of a copper(II)–cobalt(II) heteronuclear complex with Schiff base ligand

, , , &
Pages 110-113 | Received 11 Sep 2018, Accepted 24 Aug 2019, Published online: 02 Dec 2019

References

  • Hartlieb, K. J. ; Holcroft, J. M. ; Moghadam, P. Z. ; Vermeulen, N. A. ; Algaradah, M. M. ; Nassar, M. S. ; Botros, Y. Y. ; Snurr, R. Q. ; Stoddart, J. F. CD-MOF: a Versatile Separation Medium. J. Am. Chem. Soc. 2016, 138 , 2292–2301. DOI:10.1021/jacs.5b12860.
  • Zhang, S.-Y. ; Wojtas, L. ; Zaworotko, M. J. Structural Insight into Guest Binding Sites in a Porous Homochiral Metal − Organic Material. J. Am. Chem. Soc. 2015, 137 , 12045–12049. DOI:10.1021/jacs.5b06760.
  • Xue, M. ; Li, B. ; Qiu, S. ; Chen, B. Emerging Functional Chiral Microporous Materials: Synthetic Strategies and Enantioselective Separations. Mater. Today 2016, 19 , 503–515. DOI:10.1016/j.mattod.2016.03.003.
  • Zhao, J. S. ; Li, H. W. ; Han, Y. Z. ; Li, R. ; Ding, X. S. ; Feng, X. ; Wang, B. Chirality from Substitution: Enantiomer Separation via a Modified Metal-Organic Framework. J. Mater. Chem. A 2015, 3 , 12145–12148. DOI:10.1039/C5TA00998G.
  • Martell, J. D. ; Porter-Zasada, L. B. ; Forse, A. C. ; Siegelman, R. L. ; Gonzalez, M. I. ; Oktawiec, J. ; Runčevski, T. ; Xu, J. ; Srebro-Hooper, M. ; Milner, P. J. ; et al. Enantioselective Recognition of Ammonium Carbamates in a Chiral Metal-Organic Framework. J. Am. Chem. Soc. 2017, 139 , 16000–16012. DOI:10.1021/jacs.7b09983.
  • Zhang, S.-Y. ; Yang, C.-X. ; Shi, W. ; Yan, X.-P. ; Cheng, P. ; Wojtas, L. ; Zaworotko, M. J. A Chiral Metal-Organic Material that Enables Enantiomeric Identification and Purification. Chem 2017, 3 , 281–289. DOI:10.1016/j.chempr.2017.07.004.
  • Han, J. ; Soloshonok, V. A. ; Klika, K. D. ; Drabowicz, J. ; Wzorek, A. Chiral Sulfoxides: Advances in Asymmetric Synthesis and Problems with the Accurate Determination of the Stereochemical Outcome. Chem. Soc. Rev. 2018, 47 , 1307–1350. DOI:10.1039/C6CS00703A.
  • Yu, Y. J. ; Yu, C. ; Niu, Y. Z. ; Chen, J. ; Zhao, Y. L. ; Zhang, Y. C. ; Gao, R. F. ; He, J. L. Target Triggered Cleavage Effect of DNAzyme: Relying on Pd–Pt Alloys Functionalized Fe-MOFs for Amplified Detection of Pb2+ . Biosens. Bioelectron 2018, 101 , 297–303.
  • Carrington, E. J. ; McAnally, C. A. ; Fletcher, A. J. ; Thompson, S. P. ; Warren, M. ; Brammer, L. Solvent-Switchable Continuous-Breathing Behaviour in a Diamondoid Metal–Organic Framework and Its Influence on CO2 Versus CH4 Selectivity. Nature Chem. 2017, 9 , 882–889. DOI:10.1038/nchem.2747.
  • Kim, H. ; Yang, S. W. ; Rao, S. R. ; Narayanan, S. ; Kapustin, E. A. ; Furukawa, H. ; Umans, A. S. ; Yaghi, O. M. ; Wang, E. N. Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight. Science 2017, 356 , 430–434. DOI:10.1126/science.aam8743.
  • Wang, Z.-X. ; Wu, L.-F. ; Hou, X.-K. ; Shao, M. ; Xiao, H.-P. ; Li, M.-X. Assemblies of 1D and 2D Copper(II) Chiral Coordination Polymers by Salicylaldehyde Schiff Bases: Synthesis, Crystal Structures, and Magnetic Properties. Z Anorg. Allg. Chem. 2014, 640 , 229–235. DOI:10.1002/zaac.201300283.
  • Constable, E. C. ; Zhang, G. ; Housecroft, C. E. ; Neuburger, M. ; Zampese, J. A. Host–Guest Chemistry of a chiral Schiff Base Copper(II) Complex: Can Chiral Information be Transferred to the Guest Cation? Cryst. Eng. Comm. 2010, 12 , 1764–1773. DOI:10.1039/b922929a.
  • Costes, J.-P. ; Duhayon, C. ; Vendier, L. ; Mota, A. J. Reactions of a Series of ZnL, CuL and NiL Schiff Base and Non-Schiff Base Complexes with MCl2 Salts (M = Cu, Ni, Mn): Syntheses, Structures, Magnetic Properties and DFT Calculations. New J. Chem. 2018, 42 , 3683–3691. DOI:10.1039/C7NJ04347C.
  • Zhou, H. ; Chen, C. ; Liu, Y. ; Shen, X. Construction of Copper(II)–Dysprosium(III)–Iron(III) Trinuclear Cluster Based on Schiff Base Ligand: Synthesis, Structure And Magnetism. Inorg. Chim. Acta 2015, 437 , 188–194. DOI:10.1016/j.ica.2015.08.020.
  • Tao, R.-J. ; Li, F.-A. ; Cheng, Y.-X. ; Zang, S.-Q. ; Wang, Q.-L. ; Niu, J.-Y. ; Liao, D.-Z. Synthesis, Crystal Structure and Magnetic Properties of a Chain Coordination Polymer {[Cu4L2(H2O)]·H2O}n . Inorg. Chim. Acta 2006, 359 , 2053–2058. DOI:10.1016/j.ica.2006.01.004.
  • Jana, A. ; Majumder, S. ; Carrella, L. ; Nayak, M. ; Weyhermueller, T. ; Dutta, S. ; Schollmeyer, D. ; Rentschler, E. ; Koner, R. ; Mohanta, S. Syntheses, Structures, and Magnetic Properties of Diphenoxo-Bridged CuIILnIII and NiII(low-spin)LnIII Compounds Derived from a Compartmental Ligand (Ln = Ce − Yb). Inorg. Chem. 2010, 49 , 9012–9025. DOI:10.1021/ic101445n.
  • Pasatoiu, T. D. ; Sutter, J.-P. ; Madalan, A. M. ; Chiboub Fellah, F. Z. ; Duhayon, C. ; Andruh, M. Preparation, Crystal Structures, and Magnetic Features for a Series of Dinuclear [NiIILnIII] Schiff-Base Complexes: Evidence for Slow Relaxation of the Magnetization for the DyIII Derivative. Inorg. Chem. 2011, 50 , 5890–5898. DOI:10.1021/ic2004276.
  • Lu, X.-Y. ; Liu, Y.-Q. ; Deng, X.-W. ; Zhu, Z.-X. ; Yao, M.-X. ; Jing, S. Synthesis, Structures and Magnetism of Heterodinuclear Ni–Ln Complexes: Field-Induced Single-Molecule Magnet Behavior in the Dysprosium Analogue. New J. Chem. 2015, 39 , 3467–3473. DOI:10.1039/C4NJ02162B.
  • Ostakis, G. E. ; Perlepes, S. P. ; Blatov, V. A. ; Proserpio, D. M. ; Powell, A. K. High-Nuclearity Cobalt Coordination Clusters: Synthetic, Topological and Magnetic Aspects. Coord. Chem. Rev. 2012, 256 , 1246–1278. DOI:10.1016/j.ccr.2012.02.002.
  • Wang, Z.-X. ; Wu, L.-F. ; Zhang, X. ; Xing, F. ; Li, M.-X. Structural Diversity and Magnetic Properties of Six Cobalt Coordination Polymers Based on 2,2′-Phosphinico-Dibenzoate Ligand. Dalton Trans. 2016, 45 , 19500–19510. DOI:10.1039/C6DT04010A.
  • Branzea, D. G. ; Madalan, A. M. ; Ciattini, S. ; Avarvari, N. ; Caneschi, A. ; Andruh, M. New Heterometallic Coordination Polymers Constructed from 3d-3d´ Binuclear Nodes. New J. Chem. 2010, 34 , 2479–2490. DOI:10.1039/c0nj00238k.
  • Majumder, S. ; Koner, R. ; Lemoine, P. ; Nayak, M. ; Ghosh, M. ; Hazra, S. ; Lucas, C. R. ; Mohanta, S. Role of Coordinated Water and Hydrogen-Bonding Interactions in Stabilizing Monophenoxido-Bridged Triangular CuIIMIICuII Compounds (M = Cu, Co, Ni, or Fe) Derived from N,N´-ethylenebis(3-methoxysalicylaldimine): Syntheses, Structures, and Magnetic Properties. Eur. J. Inorg. Chem. 2009, 23 , 3447–3457. DOI:10.1002/ejic.200900281.
  • Software Packages SMART ; Siemens Analytical X-ray Instruments Inc.: Madison (WI), 1996.
  • Sheldrick, G. M. SADABS, Version 2008/1 ; University of Göttingen: Göttingen, Germany, 2008.
  • Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures from Diffraction Data ; University of Göttingen: Göttingen, Germany, 1997.
  • Nayak, M. ; Koner, R. ; Lin, H.-H. ; Flörke, U. ; Wei, H.-H. ; Mohanta, S. Syntheses, Structures, and Magnetic Properties of Mononuclear CuII and Tetranuclear CuII 3MII (M = Cu, Co, or Mn) Compounds Derived from N,N´-ethylenebis(3-ethoxysalicylaldimine): Cocrystallization due to Potential Encapsulation of Water. Inorg. Chem. 2006, 45 , 10764–10773. DOI:10.1021/ic061049u.
  • Clouston, L. J. ; Bernales, V. ; Cammarota, R. C. ; Carlson, R. K. ; Bill, E. ; Gagliardi, L. ; Lu, C. C. Heterobimetallic Complexes that Bond Vanadium to Iron, Cobalt, and Nickel. Inorg. Chem. 2015, 54 , 11669–11679. DOI:10.1021/acs.inorgchem.5b01631.
  • Vallejo, J. ; Fortea-Perez, F. R. ; Pardo, E. ; Benmansour, S. ; Castro, I. ; Krzystek, J. ; Armentano, D. ; Cano, J. Guest-Dependent Single-Ion Magnet Behaviour in a Cobalt(II) Metal–Organic Framework. Chem. Sci. 2016, 7 , 2286–2293. DOI:10.1039/C5SC04461H.
  • Escuer, A. ; Vicente, R. ; Mernari, B. ; El Gueddi, A. ; Pierrot, M. Syntheses, Structure, and Magnetic Behavior of Two New Nickel(II) and Cobalt(II) Dinuclear Complexes with 1,4-Dicarboxylatopyridazine. MO Calculations of the Superexchange Pathway Through the Pyridazine Bridge. Inorg. Chem. 1997, 36 , 2511–2516. DOI:10.1021/ic9608859.
  • Gutiérrez, A. ; Perpiñán, M. F. ; Sánchez, A. E. ; Torralba, M. C. ; Torres, M. R. Stabilization of the Cobalt Coordination Site in Transmetalation Processes on Dinuclear Salen Derivatives. Inorg. Chim. Acta 2010, 363 , 1837–1842. DOI:10.1016/j.ica.2010.02.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.