167
Views
6
CrossRef citations to date
0
Altmetric
Articles

Eco-friendly synthesis of iron nanoparticles using Uvaria chamae: Characterization and biological activity

&
Pages 431-442 | Received 18 Jun 2018, Accepted 24 Aug 2019, Published online: 18 Sep 2019

References

  • Panigrahi, S.; Kundu, S.; Ghosh, S. K.; Nath, S.; Pal, T. General Method of Synthesis for Metal Nanoparticles. J. Nanopart. Res. 2004, 6, 411–414. DOI:10.1007/s11051-004-6575-2.
  • Senapati, S.; Ahmad, A.; Khan, M. I.; Sastry, M.; Kumar, A. Extracellular Biosynthesis of Bimetallic Au-Ag Alloy Nanoparticles. Small. 2005, 1, 517–520. DOI:10.1002/smll.200400053.
  • Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Silver-Based Crystalline Nanoparticles, Microbially Fabricated. Proc. Natl. Acad. Sci. USA. 1999, 96, 13611–13614.
  • Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of Zirconia Nanoparticles Using the Fungus Fusarium oxysporum. J. Mater. Chem. 2004, 14, 3303–3305.
  • Rai, M.; Yadav, A.; Gade, A. Current [corrected] Trends in Phytosynthesis of Metal Nanoparticles. Crit. Rev. Biotechnol. 2008, 28, 277–284.
  • Giancivincenzo, P. D.; Marradi, M.; Martinez-Avila, O. M.; Bedoya, L. M.; Alcami, J.; Penades, S. Gold Nanoparticles Capped with Sulfate-Ended Ligands as anti-HIV Agents. Bioorg. Med. Chem. Lett. 2010, 20, 2718–2721. DOI:10.1016/j.bmcl.2010.03.079.
  • Lara, H. H.; Ayala-Nuñez, N. V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of Antiviral Action of Silver Nanoparticles Against HIV-1. J. Nanobiotechnol. 2010, 8, 1. DOI:10.1186/1477-3155-8-1.
  • Arshad, M.; Qayyum, A.; Abbas, G.; Haider, R.; Iqbal, M.; Nazir, A. Influence of Different Solvents on Portrayal and Photocatalytic Activity of Tin-Doped Zinc Oxide Nanoparticles. J. Mol. Liq. 2018, 260, 272–278. DOI:10.1016/j.molliq.2018.03.074.
  • Ashar, A.; Iqbal, M.; Bhatti, I. A.; Ahmad, M. Z.; Qureshi, K.; Nisar, J.; Bukhari, I. H. Synthesis, Characterization and Photocatalytic Activity of ZnO Flower and Pseudo-Sphere: Nonylphenol Ethoxylate Degradation under UV and Solar Irradiation. J. Alloys Compd. 2016, 678, 126–136. DOI:10.1016/j.jallcom.2016.03.251.
  • Arshad, M.; Qayyum, A.; Abbas Shar, G.; Afshan Soomro, G.; Iqbal, M. Zn-Doped SiO2 Nanoparticles Preparation and Characterization under the Effect of Various Solvents: Antibacterial, Antifungal and Photocatalytic Performance Evaluation. J. Photochem. Photobiol. B: Biol. 2018, 185, 76–183. DOI:10.1016/j.jphotobiol.2018.04.043.
  • S.; Ata, I.; Shaheen, Qurat-Ul-Ayne, S.; Ghafoor, M. Iqbal, Graphene and Silver Decorated ZnO Composite Synthesis, Characterization and Photocatalytic Activity Evaluation. Diam. Relat. Mater. 2018, 90, 26–31.
  • Shahab-Ud-Din, M.; Zubair Ahmad, K.; Qureshi, I.; Ahmad Bhatti, M. Abbas, Hydrothermal Synthesis of Molybdenum Trioxide, Characterization and Photocatalytic Activity. Mater. Res. Bull. 2018, 100, 120–130.
  • Suresh, G.; Gunasekar, P. H.; Kokila, D.; Prabhu, D.; Dinesh, D.; Ravichandran, N.; Ramesh, B.; Koodalingam, A.; Siva, G. V. Green Synthesis of Silver Nanoparticles Using Delphinium denudatum Root Extract Exhibits Antibacterial and Mosquito Larvacidal Activities. Spectro Chim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 127, 61–66. DOI:10.1016/j.saa.2014.02.030.
  • Rajamani, B.; Raju, J. X.; Manickam, A. Larvicidal Property of Green Synthesized Silver Nanoparticles Against Vector Mosquitoes (Anopheles stephensi and Aedes aegypti). J. King Saud Univ. – Sci. 2016, 28, 318–323.
  • Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroğlu, A. E.; Scott, T. B.; Hallam, K. R. Green Synthesis of Iron Nanoparticles and Their Application as a Fenton-Like Catalyst for the Degradation of Aqueous Cationic and Anionic Dyes. Chem. Eng. J. 2011, 172, 258–266. DOI:10.1016/j.cej.2011.05.103.
  • Senthil, M.; Ramesh, C. Biogenic Synthesis of Fe3O4 Nanoparticles Using Tridax procumbens Leaf Extract and its Antibacterial Activity on Pseudomonas aeruginosa. Dig. J. Nanomater. Biostruct. 2012, 7, 1655–1661.
  • Kiruba, D.; Vinothini, S. C. G.; Subramanian, G.; Nehru, N. K.; Sivakumar, M. Biosynthesis of Copper, Zero-Valent Iron and Silver Nanoparticles using Dodonaea viscosa Extract for Antibacterial Activity against Human Pathogens. J. Nanopart. Res. 2013, 15, 1319. DOI:10.1007/s11051-012-1319-1.
  • Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Comparative Toxicity of 24 Manufactured Nanoparticles in Human Alveolar Epithelial and Macrophage Cell Lines. Part. Fibre Toxicol. 2009, 6, 14–25. DOI:10.1186/1743-8977-6-14.
  • Asharani, P. V.; Wu, Y. L.; Gong, Z.; Valiyaveettil, S. Toxicity of Silver Nanoparticles in Zebra Fish Models. Nanotechnology 2008, 19, 255102–255110.
  • Huber, D. L. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005, 1, 482–501. DOI:10.1002/smll.200500006.
  • Okwu, D. E.; Iroabuchi, F. Phytochemical Composition and Biological Activities of Uvaria chamae and Clerodendoron splendens. E-J. Chem. 2009, 6, 553–560. DOI:10.1155/2009/190346.
  • Okogun, J. I. Drug production Efforts in Nigeria. Medicinal Chemistry Research and Missing Link. Being a text of a lecture given to the Nigeria. Acad. Sci. 1985, pp. 29–52.
  • Irvin, F. R. Woody Plants of Ghana with Special Reference to Their Uses; Oxford University Press: London, 1961; pp. 19–20, 695.
  • Shukda, P.; Shital, P. M. An Introduction to the Taxonomy of Angiosperms; Vikas Publishing House: New Delhi, 1994; p. 204.
  • Temitope, I. B.; Felix, O. O. Phytochemical and Ethnobotanical Study of Some Selected Medicinal Plants from Nigeria. J. Med. Plants Res. 2012, 6, 1106–1118.
  • Iroha, I. R.; Oji, A. E.; Afiukwa, T. N.; Nwuzo, A. C. Antimicrobial Activity of Extracts of Garcinia kola Against Resistant Extended Spectrum Beta Lactamax Producing Escherichia coli and Klebsiella pneumonia. Nigerian J. Microbiol. 2008, 22, 1693–1697.
  • Kumar, D. S.; Prabhakar, Y. S. On the Ethnomedical Significance of the Arjun Tree, Terminalia arjuna (Roxb.) Wight & Arnot. J. Ethnopharmacol. 1987, 20, 173–190.
  • Duh, P. D.; Tu, Y. Y.; Yen, G. C. Antioxidant Activity of the Aqueous Extract of Harn Jyur (ChrySan Themum Morifolium Ramat). Lebensen Wiss Technol. 1999, 32, 269–277. DOI:10.1006/fstl.1999.0548.
  • WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. World Health Organization Document WHO 2005, cds/WHO-pes/gcdpp/13.
  • Bharde, A. A.; Parikh, R. Y.; Baidakova, M.; Jouen, S.; Hannoyer, B.; Enoki, T.; Prasad, B.; Shouche, Y. S.; Ogale, S.; Sastry, M. Bacteria-Mediated Precursor-Dependent Biosynthesis of Superparamagnetic Iron Oxide and Iron Sulfide Nanoparticles. Langmuir 2008, 24, 5787–5794.
  • Moon, J. W.; Rawn, C. J.; Rondinone, A. J.; Love, L. J.; Roh, Y.; Everett, S. M.; Lauf, R. J.; Phelps, T. J. Large-Scale Production of Magnetic Nanoparticles Using Bacterial Fermentation. J. Ind. Microbiol. Biotechnol. 2010, 37, 1023–1031. DOI:10.1007/s10295-010-0749-y.
  • Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Biomolecules in Grape Leaf Extract Involved in One-Step Synthesis of Iron-Based Nanoparticles. RSC Adv. 2014, 4, 53467–53474. DOI:10.1039/C4RA08808E.
  • Pattanayak, M.; Nayak, P. L. Ecofriendly Green Synthesis of iron Nanoparticles From Various Plant and Spices Extract. Int. J. Plant, Anim. Environ. Sci. 2013, 3, 68–78.
  • Wang, Z.; Fang, C.; Mallavarapu, M. Characterization of Iron–Polyphenol Complex Nanoparticles Synthesized by Sage (Salvia officinalis) Leaves. Environ. Technol. Innov. 2015, 4, 92–97. DOI:10.1016/j.eti.2015.05.004.
  • Okwuosa, O. M. T. B.; Chukwura, E. I.; Chukwuma, G. O.; Okwuosa, C. N.; Enweani, I. B.; Agbakoba, N. R.; Chukwuma, C. M.; Manafa, P. O.; Umedum, C. U. Phytochemical and Antifungal Activities of Uvaria chamae Leaves and Roots, Spondias mombin Leaves and Bark and Combretum racemosum Leaves. Afr. J. Med. Med. Sci 2012, 41, Suppl: 99–103.
  • Nabikhan, A.; Kandasamy, K.; Raj, A.; Alikunhi, N. Synthesis of Antimicrobial Silver Nanoparticles by Callus and Leaf Extracts from Saltmarsh Plant, Sesuvium portulacastrum L. Colloids Surf. B: Biointerfaces 2010, 79, 488–493. DOI:10.1016/j.colsurfb.2010.05.018.
  • Saranya, S.; Vijayarani, K.; Pavithra, S. Green Synthesis of Iron Nanoparticles using Aqueous Extract of Musa ornata Flower Sheath Against Pathogenic Bacteria. Indian J. Pharm. Sci. 2017, 79, 688–694.
  • Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesis of Fe Nanoparticles Using Eucalyptus Leaf Extracts for treatment of Eutrophic Wastewater. Sci. Total Environ. 2014, 44, 466–467, 210–213.
  • Wang, T.; Jin, X.; Chen, Z. Iron Complex Nanoparticles Synthesized by Eucalyptus Leaves. ACS Sustain. Chem. Eng. 2013, 1, 1551–1554. DOI:10.1021/sc400174a.
  • Sondi, I.; Salopek-Sondi, B. Silver Nanoparticles as Antimicrobial Agent: A Case Study of E. coli as a Model for Gram-Negative Bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. DOI:10.1016/S0021-9797(04)00163-8.
  • Karthik, R.; Sasikumar, R.; Shen-Ming, C.; Govindasamy, M.; Kumar, J.; Vinoth.; Muthuraj, V. Green Synthesis of Platinum Nanoparticles using Quercus Glauca Extract and Its Electrochemical Oxidation of Hydrazine in Water Samples. Int. J. Electrochem. Sci. 2016, 11, 8245–8255. DOI:10.20964/2016.10.62.
  • SalimSaleh, A.-T. Characterization of Iron Nanoparticle Preparation from Punica granatum peel. Int. J. Sci. Nat. 2017, 8, 213–216.
  • Henam, S. D.; Muzaffar, A. B.; Mohammad, A. S.; Shazia, P.; Abdul, H. W. Green Synthesis of Iron Oxide Nanoparticles Using Platanus orientalis Leaf Extract for Antifungal Activity. Green Process. Synth. 2019, 8, 38–45.
  • Kuang, Y.; Wang, Q.; Chen, Z.; Megharaj, M.; Naidu, R. Heterogeneous Fenton-Like Oxidation of Monochlorobenzene Using Green Synthesis of Iron Nanoparticles. J. Colloid Interface Sci. 2013, 410, 67–73. DOI:10.1016/j.jcis.2013.08.020.
  • Farghaly, O. A.; Abeer, A.; El–Saharty, Hamed, A. M.; Hamada, A. A. Noreldeen, Magnetite Fe3O4 Nanoparticles: Synthesis, Characterization and Anticancer Activity. Chem. Adv. Mater. 2017, 2, 60–66.
  • Kumar, K. M.; Mandal, B. K.; Kumar, K. S.; Reddy, P. S.; Sreedhar, B. Biobased Green Method to Synthesise Palladium and Iron Nanoparticles Using Terminalia chebula Aqueous Extract. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2013, 102, 128–133. DOI:10.1016/j.saa.2012.10.015.
  • Latha, N.; Gowri, M. Bio-synthesis and Characterisation of Fe304 Nanoparticles using Carica papaya Leaves Extracts. Int. J. Sci. Res. 2012, 34, 2319–2706.
  • Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine Herb-Stil Leaf Aqueous Extracts. Colloids Surf. B: Biointerfocus 2012, 98, 112–119. DOI:10.1016/j.colsurfb.2012.04.006.
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. DOI:10.1088/0957-4484/16/10/059.
  • Odungbemi, T. Outlines and Pictures of Medicinal Plant from Nigeria; University of Lagos Press: Lagos, 2006.
  • Tanaka, Ho, T.; Linuma, M.; Takahasli, Y.; Waganawa, H. Dimeric Chalcone Derivatives From Mallotus philippensis. Phytochemistry 1998, 48, 142–147.
  • Kanayairam, V.; Ravichandran, R. Larvicidal Activity of Synthesized Silver Nanoparticles Using Isoamyl Acetate Identified in Annona squamosa Leaves Against Aedes aegypti and Culex quinquefasciatus. J. Basic Appl. Zool. 2016, 74, 16–22.
  • Ana, V. C.; Efigenia, M.; Elhadi, M. Y.; Eva, N. O. Annona muricata: A Comprehensive Review on Its Traditional Medicinal Uses, Phytochemicals, Pharmacological Activities, Mechanisms of Action and Toxicity. Arab. J. Chem. 2018, 11, 662–691.
  • Kanayairam, V.; Abdul, A. R.; Govindasamy, R.; Selvaraj, M. R.; Gandhi, E.; Chinnaperumal, K.; Sampath, M.; Thirunavukkarasu, S.; Moorthy, I.; Chinnadurai, S. Larvicidal Activity of Green Synthesized Silver Nanoparticles Using Bark Aqueous extract of Ficus racemosa Against Culex quinquefasciatus and Culex Gelidus. Asian Pac. J. Trop. Med. 2013, 6, 95–101.
  • Murugan, K.; Dinesh, D.; Nataraj, D.; Subramaniam, J.; Amuthavalli, P.; Madhavan, J.; Rajasekar, A.; Rajan, M.; Thiruppathi, K. P.; Kumar, S.; et al. Iron and Iron Oxide Nanoparticles are Highly Toxic to Culex quinquefasciatus With Little Non-Target Effects on Larvivorous Fishes. Environ. Sci. Pollut. Res. 2018, 25, 10504–10514. DOI:10.1007/s11356-017-0313-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.