284
Views
27
CrossRef citations to date
0
Altmetric
Articles

Size controlled, time-efficient biosynthesis of silver nanoparticles from Pleurotus florida using ultra-violet, visible range, and microwave radiations

ORCID Icon, &
Pages 35-41 | Received 31 Dec 2018, Accepted 24 Aug 2019, Published online: 10 Sep 2019

References

  • Clement, J. L.; Jarrett, P. S. Antibacterial Silver. Met. Based Drugs. 1994, 1, 467. DOI: 10.1155/MBD.1994.467.
  • Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Ad. 2009, 27, 76. DOI: 10.1016/j.biotechadv.2008.09.002.
  • El-Sayed, M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc. Chem. Res. 2001, 34, 257. DOI: 10.1021/ar960016n.
  • Jiang, Z. J.; Liu, C. Y.; Sun, L. W. Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres. J. Phys. Chem. B 2005, 109, 1730. DOI: 10.1021/jp046032g.
  • Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Bacteria as Workers in the Living Factory: Metal-Accumulating Bacteria and Their Potential for Materials Science. Trends Biotechnol. 2001, 19, P15. DOI: 10.1016/S0167-7799(00)01514-6.
  • Moulin, E.; Sukmanowski, J.; Schulte, M.; Gordijn, A.; Royer, F. X.; Stiebig, H. Thin-Film Silicon Solar Cells with Integrated Silver Nanoparticles. Thin Solid Films. 2008, 516, 6813. DOI: 10.1016/j.tsf.2007.12.018.
  • McFarland, A. D.; Van Duyne, R. P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Lett. 2003, 3, 1057. DOI: 10.1021/nl034372s.
  • Abbasi, E.; Milani, M.; Aval, S. F.; Kouhi, M.; Akbarzadeh, A.; Nasrabadi, H. T.; Nikasa, P.; Joo, S. W.; Hanifehpour, Y.; Nejati-Koshki, K.; et al. Silver Nanoparticles: Synthesis Methods, Bio-Applications and Properties. Crit. Rev. Microbiol. 2016, 42, 173. DOI: 10.3109/1040841X.2014.912200.
  • Zhu, S.; Du, C. L.; Fu, Y. Fabrication and Characterization of Rhombic Silver Nanoparticles for Biosensing. Opt. Mater. (Amst) 2009, 31, 769. DOI: 10.1016/j.optmat.2008.07.014.
  • Panacek, A.; Kvítek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizúrova, N.; Sharma, V. K.; Nevecna, T.; Z. R. Silver Colloid Nanoparticles : Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B. 2006, 110, 16248. DOI: 10.1021/jp063826h.
  • Raveendran, P.; Fu, J.; Wallen, S. L. Completely “Green” Synthesis and Stabilization of Metal Nanoparticles. J. Am. Chem. Soc. 2003, 125, 13940. DOI: 10.1021/ja029267j.
  • Navaladian, S.; Viswanathan, B.; Viswanath, R. P.; Varadarajan, T. K. Thermal Decomposition as Route for Silver Nanoparticles. Nanoscale Res. Lett. 2007, 2, 44. DOI: 10.1007/s11671-006-9028-2.
  • Guzman, M.; Dille, J.; Godet, S. Synthesis and Antibacterial Activity of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria. Nanomed.: Nanotechnol. Biol. Med. 2012, 8, 37. DOI: 10.1016/j.nano.2011.05.007.
  • Courrol, L. C.; de Oliveira Silva, F. R.; Gomes, L. A Simple Method to Synthesize Silver Nanoparticles by Photo-Reduction. Colloids Surf. A Physicochem. Eng. Asp. 2007, 305, 54 DOI: 10.1016/j.colsurfa.2007.04.052.
  • Narayanan, K. B.; Sakthivel, N. Biological Synthesis of Metal Nanoparticles by Microbes. Adv. Colloid Interf. Sci. 2010, 156, 1. DOI: 10.1016/j.cis.2010.02.001.
  • Virkutyte, J.; Varma, R. S. Green Synthesis of Metal Nanoparticles: Biodegradable Polymers and Enzymes in Stabilization and Surface Functionalization. Chem. Sci. 2011, 3, 4270. DOI: 10.1002/chin.201134270.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638. DOI: 10.1039/c1gc15386b.
  • Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346. DOI: 10.1016/j.biotechadv.2013.01.003.
  • Vaidyanathan, R.; Gopalram, S.; Kalishwaralal, K.; Deepak, V.; Pandian, S. R. K.; Gurunathan, S. Enhanced Silver Nanoparticle Synthesis by Optimization of Nitrate Reductase Activity. Colloids Surf. B Biointerf. 2010, 75, 335. DOI: 10.1016/j.colsurfb.2009.09.006.
  • Durán, N.; Marcato, P. D.; Alves, O. L.; De Souza, G. I. H.; Esposito, E. Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium oxysporum Strains. J. Nanobiotechnol. 2005, 3, 8 DOI: 10.1186/1477-3155-3-8.
  • Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7, 17. DOI: 10.1016/j.jare.2015.02.007.
  • Singh, P.; Kim, Y. J.; Zhang, D.; Yang, D. C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588. DOI: 10.1016/j.tibtech.2016.02.006.
  • Gade, A.; Gaikwad, S.; Tiwari, V.; Yadav, A.; Ingle, A.; Rai, M. Biofabrication of Silver Nanoparticles by Opuntia Ficus-Indica: In Vitro Antibacterial Activity and Study of the Mechanism Involved in the Synthesis. Curr. Nanosci. 2010, 6, 370. DOI: 10.2174/157341310791659026.
  • Huang, J.; Zhan, G.; Zheng, B.; Sun, D.; Lu, F.; Lin, Y.; Chen, H.; Zheng, Z.; Zheng, Y.; Li, Q. Biogenic Silver Nanoparticles by Cacumen platycladi Extract: Synthesis, Formation Mechanism, and Antibacterial Activity. Ind. Eng. Chem. Res. 2011, 50, 9095. DOI: 10.1021/ie200858y.
  • Kumar, B.; Angulo, Y.; Smita, K.; Cumbal, L.; Debut, A. Capuli Cherry-Mediated Green Synthesis of Silver Nanoparticles under White Solar and Blue LED Light. Particuology. 2016, 24, 123. DOI: 10.1016/j.partic.2015.05.005.
  • Bhat, R.; Deshpande, R.; Ganachari, S. V.; Huh, D. S.; Venkataraman, A. Photo-Irradiated Biosynthesis of Silver Nanoparticles Using Edible Mushroom Pleurotus florida and Their Antibacterial Activity Studies. Bioinorg. Chem. Appl. 2011, 2011, 1. DOI: 10.1155/2011/650979.
  • Prathna, T. C.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A. Sunlight Irradiation Induced Green Synthesis of Stable Silver Nanoparticles Using Citrus Limon Extract. Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci. 2014, 84, 65. DOI: 10.1007/s40011-013-0193-7.
  • Rastogi, L.; Arunachalam, J. Sunlight Based Irradiation Strategy for Rapid Green Synthesis of Highly Stable Silver Nanoparticles Using Aqueous Garlic (Allium sativum) Extract and Their Antibacterial Potential. Mater. Chem. Phys. 2011, 129, 558. DOI: 10.1016/j.matchemphys.2011.04.068.
  • Wei, X.; Luo, M.; Li, W.; Yang, L.; Liang, X.; Xu, L.; Kong, P.; Liu, H. Synthesis of Silver Nanoparticles by Solar Irradiation of Cell-Free Bacillus Amyloliquefaciens Extracts and AgNO3. Bioresour. Technol. 2012, 103, 273. DOI: 10.1016/j.biortech.2011.09.118.
  • Francis, S.; Joseph, S.; Koshy, E. P.; Mathew, B. Microwave Assisted Green Synthesis of Silver Nanoparticles Using Leaf Extract of Elephantopus scaber and Its Environmental and Biological Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 795. DOI: 10.1080/21691401.2017.1345921.
  • Parveen, M.; Ahmad, F.; Malla, A. M.; Azaz, S. Microwave-Assisted Green Synthesis of Silver Nanoparticles from Fraxinus excelsior Leaf Extract and Its Antioxidant Assay. Appl. Nanosci. 2016, 6, 267. DOI: 10.1007/s13204-015-0433-7.
  • Peng, H.; Yang, A.; Xiong, J. Green, Microwave-Assisted Synthesis of Silver Nanoparticles Using Bamboo Hemicelluloses and Glucose in an Aqueous Medium. Carbohydr. Polym. 2013, 91, 348 DOI: 10.1016/j.carbpol.2012.08.073.
  • Raghunandan, D.; Bedre, M. D.; Basavaraja, S.; Sawle, B.; Manjunath, S. Y.; Venkataraman, A. Rapid Biosynthesis of Irregular Shaped Gold Nanoparticles from Macerated Aqueous Extracellular Dried Clove Buds (Syzygium Aromaticum) Solution. Colloids Surf. B Biointerf. 2010, 79, 235. DOI: 10.1016/j.colsurfb.2010.04.003.
  • Hebbalalu, D.; Lalley, J.; Nadagouda, M. N.; Varma, R. S. Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves. ACS Sust. Chem. Eng. 2013, 1, 703. DOI: 10.1021/sc4000362.
  • Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410. DOI: 10.1021/jp9917648.
  • Clem Gruen, L. Interaction of Amino Acids with Silver(I) Ions. BBA – Protein Struct. 1975, 386, 270. DOI: 10.1016/0005-2795(75)90268-8.
  • Shao, Y.; Jin, Y.; Dong, S. Synthesis of Gold Nanoplates by Aspartate Reduction of Gold Chloride. Chem. Commun. 2004, 10, 1104. DOI: 10.1039/b315732f.
  • Lee, K. S.; El-Sayed, M. A. Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B 2006, 110, 19220. DOI: 10.1021/jp062536y.
  • Syed, A.; Ahmad, A. Extracellular Biosynthesis of Platinum Nanoparticles Using the Fungus Fusarium Oxysporum. Colloids Surf. B Biointerf. 2012, 97, 27. DOI: 10.1016/j.colsurfb.2012.03.026.
  • Saifuddin, N.; Wong, C. W.; Yasumira, A. A. N. Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. E-J. Chem. 2009, 6, 61. DOI: 10.1155/2009/734264.
  • Hassellöv, M.; Readman, J. W.; Ranville, J. F.; Tiede, K. Nanoparticle Analysis and Characterization Methodologies in Environmental Risk Assessment of Engineered Nanoparticles. Ecotoxicology 2008, 17, 344. DOI: 10.1007/s10646-008-0225-x.
  • Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013, 2013, 1. DOI: 10.1155/2013/313081.
  • Elamawi, R. M.; Al-Harbi, R. E.; Hendi, A. A. Biosynthesis and Characterization of Silver Nanoparticles Using Trichoderma Longibrachiatum and Their Effect on Phytopathogenic Fungi. Egypt. J. Biol. Pest. Control 2018, 28, 28. DOI: 10.1186/s41938-018-0028-1.
  • Mohanta, Y.; Nayak, D.; Biswas, K.; Singdevsachan, S.; Abd_Allah, E.; Hashem, A.; Alqarawi, A.; Yadav, D.; Mohanta, T.; Mohanta, Y. K.; et al. Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens. Molecules 2018, 23, 655. DOI: 10.3390/molecules23030655.
  • Jackson, M.; Mantsch, H. H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol 1995, 30, 95. 10.3109/10409239509085140.
  • Basavaraja, S.; Balaji, S. D.; Lagashetty, A.; Rajasab, A. H.; Venkataraman, A. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium Semitectum. Mater. Res. Bull. 2008, 43, 1164–1170. DOI: 10.1016/J.MATERRESBULL.2007.06.020.
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346. DOI: 10.1088/0957-4484/16/10/059.
  • Sondi, I.; Salopek-Sondi, B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. Coli as a Model for Gram-Negative Bacteria. J. Colloid Interf. Sci. 2004, 275, 177. DOI: 10.1016/j.jcis.2004.02.012.
  • Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95. https://doi.org/https://doi.org/10.1016/j.nano.2006.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.