581
Views
29
CrossRef citations to date
0
Altmetric
Articles

Synthesis, catalysis, antimicrobial activity, and DNA interactions of new Cu(II)-Schiff base complexes

ORCID Icon, , &
Pages 136-150 | Received 26 Feb 2019, Accepted 24 Aug 2019, Published online: 04 Oct 2019

References

  • Low, M. L. ; Maigre, L. ; Tahir, M. I. M. ; Tiekink, E. R. T. ; Dorlet, P. ; Guillot, R. ; Ravoof, T. B. ; Rosli, R. ; Pages, J.-M. ; Policar, C. ; et al. New Insight into the Structural, Electrochemical and Biological Aspects of Macroacyclic Cu(II) Complexes Derived from S-Substituted Dithiocarbazate Schiff Bases. Eur. J. Med. Chem. 2016, 120 , 1–12. DOI: 10.1016/j.ejmech.2016.04.027.
  • Theetharappan, M. ; Subha, L. ; Balakrishnan, C. ; Neelakantan, M. A. Binding Interactions of Mixed Ligand Copper(II) Amino Acid Schiff Base Complexes with Biological Targets: Spectroscopic Evaluation and Molecular Docking. Appl. Organometal. Chem. 2017, 31 , e3713. DOI: 10.1002/aoc.3713.
  • Shabbir, M. ; Akhter, Z. ; Ahmad, I. ; Ahmed, S. ; McKee, V. ; Ismail, H. ; Mirza, B. Copper (II) Complexes Bearing Ether Based on Donor Bidentate Schiff Bases: Synthesis, Characterization, Biological and Electrochemical Investigations. Polyhedron 2017, 124 , 117–124. DOI: 10.1016/j.poly.2016.12.039.
  • Demirci, S. ; Doğan, A. ; Türkmen, N. B. ; Telci, D. ; Rizvanov, A. A. ; Şahin, F. Schiff base-Poloxamer P85 Combination Demonstrates Chemotherapeutic Effect on Prostate Cancer Cells in Vitro. Biomed. Pharmacother. 2017, 86 , 492–501. DOI: 10.1016/j.biopha.2016.11.101.
  • AlAjmi, M. F. ; Hussain, A. ; Alsalme, A. ; Khan, R. A. In Vivo Assessment of Newly Synthesized Achiral Copper(II) and Zinc(II) Complexes of a Benzimidazole Derived Scaffold as a Potential Analgesic, Antipyretic and anti-Inflammatory. RSC Adv. 2016, 6 , 19475–19481. DOI: 10.1039/C5RA25071D.
  • Singh, B. K. ; Rajour, H. K. ; Prakash, A. Synthesis, Characterization and Biological Activity of Transition Metal Complexes with Schiff Bases Derived from 2-Nitrobenzaldehyde with Glycine and Methionine. Spectrochim. Acta A 2012, 94 , 143–151. DOI: 10.1016/j.saa.2012.03.077.
  • Reddy, P. R. ; Shilpa, A. ; Raju, N. ; Raghavaiah, P. J. Synthesis, Structure, DNA Binding and Cleavage Properties of Ternary Amino Acid Schiff Base-Phen/Bipy Cu(II) Complexes. Inorg. Biochem. 2011, 105 , 1603–1612. DOI: 10.1016/j.jinorgbio.2011.08.022.
  • Ma, X.-F. ; Li, D.-D. ; Tian, J.-L. ; Kou, Y.-Y. ; Yan, S.-P. DNA Binding and Cleavage Activity of Reduced Amino-Acid Schiff Base Complexes of Cobalt(II), Copper(II), and Cadmium(II). Transit. Met. Chem. 2009, 34 , 475–481. DOI: 10.1007/s11243-009-9219-7.
  • Adam, M. S. S. ; Elsawy, H. Biological Potential of Oxo-Vanadium Salicyledieneamino-Acid Complexes as Cytotoxic, Antimicrobial, Antioxidant and DNA Interaction. J. Photochem. Photobiol. B 2018, 184 , 34–43. DOI: 10.1016/j.jphotobiol.2018.05.002.
  • Krishnamohan Sharma, C. V. Crystal Engineering − Where Do We Go from Here? Cryst. Growth Des. 2002, 2 , 465–474. DOI: 10.1021/cg0200356.
  • Abd El-Lateef, H. M. ; Adam, M. S. S. ; Khalaf, M. M. Synthesis of Polar Unique 3d Metal-Imine Complexes of Salicylidene Anthranilate Sodium Salt. Homogeneous Catalytic and Corrosion Inhibition Performance. J. Taiwan Inst. Chem. Eng. 2018, 88 , 286–304. 88, DOI: 10.1016/j.jtice.2018.04.024.
  • Adam, M. S. S. ; Abd El-Lateef, H. M. ; Soliman, K. A. Anionic Oxide-Vanadium Schiff Base Amino Acid Complexes as Potent Inhibitors and as Effective Catalysts for Sulfides Oxidation: Experimental Studies Complemented with Quantum Chemical Calculations. J. Mol. Liq. 2018, 250 , 207–322.
  • Gao, I.-J. ; Ren, Z.-G. ; Lang, J.-P. Oxidation of Benzyl Alcohols to Benzaldehydes in Water Catalyzed by a Cu(II) Complex with a Zwitterionic Calix[4]Arene Ligand. J. Organomet. Chem. 2015, 792 , 88–92. DOI: 10.1016/j.jorganchem.2015.02.008.
  • Chattopadhyay, T. ; Kogiso, M. ; Asakawa, M. ; Shimizu, T. ; Aoyagi, M. Copper(II)-Coordinated Organic Nanotube: A Novel Heterogeneous Catalyst for Various Oxidation Reactions. Catal. Commun. 2010, 12 , 9–13. DOI: 10.1016/j.catcom.2010.07.013.
  • Ramakrishna, D. ; Bhat, B. R. A Catalytic Process for the Selective Oxidation of Alcohols by Copper (II) Complexes. Inorg. Chem. Commun. 2011, 14 , 690–693. DOI: 10.1016/j.inoche.2011.02.007.
  • Parmeggiani, C. ; Cardona, F. Transition Metal Based Catalysts in the Aerobic Oxidation of Alcohols. Green Chem. 2012, 14 , 547–564. DOI: 10.1039/c2gc16344f.
  • Puterova-Tokarova, Z. ; Mrazova, V. ; Boca, R. Magnetism of Novel Schiff-Base Copper(II) Complexes Derived from Aminoacids. Polyhedron 2013, 61 , 87–93.
  • Wang, M.-Z. ; Li, Y. ; Ji, J.-J. ; Huang, G.-L. ; Zhang, X. ; Li, S.-H. ; Yang, X.-J. Novel Hybrids of Cu2+ Ternary Complexes of Salicylidene-Amino Acid Schiff Base with Phenanthroline (or Bipyridine) Intercalated in Mg/Al-NO3-Layered Double Hydroxide. Chin. Chem. Lett. 2013, 24 , 593–596. DOI: 10.1016/j.cclet.2013.03.040.
  • Piera, J. ; Backvall, J. E. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer—A Biomimetic Approach. Angew. Chem. Int. Ed. 2008, 47 , 3506–3523. DOI: 10.1002/anie.200700604.
  • Islam, S. M. ; Roy, A. S. ; Mondal, P. ; Mubarak, M. ; Mondal, S. ; Hossain, D. ; Banerjee, S. ; Santra, S. C. Synthesis, Catalytic Oxidation and Antimicrobial Activity of Copper(II) Schiff Base Complex. J. Mol. Catal. A 2011, 336 , 106–114. DOI: 10.1016/j.molcata.2011.01.006.
  • Moradi-Shoeili, Z. ; Amini, Z. ; Boghaei, D. M. ; Notash, B. Synthesis, X-Ray Structure and Ascorbic Oxidation Properties of Ternary α-Amino Acid Schiff Base-Bipy Cu(II) Complexes as Functional Models for Ascorbic Oxidase. Polyhedron 2013, 53 , 76–82. DOI: 10.1016/j.poly.2013.01.020.
  • Steves, E. ; Stahl, S. S. Copper(I)/ABNO-Catalyzed Aerobic Alcohol Oxidation: Alleviating Steric and Electronic Constraints of Cu/TEMPO Catalyst Systems. J. Am. Chem. Soc. 2013, 135 , 15742–15745. DOI: 10.1021/ja409241h.
  • Zueva, E. ; Walton, P. ; McGrady, J. E. Catalytic Alcohol Oxidation by an Unsymmetrical 5-Coordinate Copper Complex: Electronic Structure and Mechanism. Dalton Trans. 2006, 159–167. DOI: 10.1039/B512298H.
  • Adam, M. S. S. Catalytic Potentials of Homodioxo-Bimetallic Dihydrazone Complexes of Uranium and Molybdenum in a Homogeneous Oxidation of Alkenes. Monatsh. Chem. 2015, 146 , 1823–1836. DOI: 10.1007/s00706-015-1477-9.
  • Mannam, S. ; Alamsetti, S. K. ; Sekar, G. Aerobic, Chemoselective Oxidation of Alcohols to Carbonyl Compounds Catalyzed by a DABCO-Copper Complex under Mild Conditions. Adv. Synth. Catal. 2007, 349 , 2253–2258. DOI: 10.1002/adsc.200700213.
  • Wang, X. Y. ; Zhang, J. ; Li, K. ; Jiang, N. ; Chen, S. Y. ; Lin, H. H. ; Huang, Y. ; Ma, L. J. ; Yu, X. Q. Synthesis and DNA Cleavage Activities of Mononuclear Macrocyclic Polyamine Zinc(II), Copper(II), Cobalt(II) Complexes Which Linked with Uracil. Bioorg. Med. Chem. 2006, 14 , 6745–6751. DOI: 10.1016/j.bmc.2006.05.049.
  • Gupta, K. C. ; Sutar, A. K. Catalytic Activities of Schiff Base Transition Metal Complexes. Coord. Chem. Rev. 2008, 252 , 1420–1450. DOI: 10.1016/j.ccr.2007.09.005.
  • Abdel-Rahman, L. H. ; Abu-Dief, A. M. ; Ismael, M. ; Mohamed, M. A. A. ; Hashem, N. A. Synthesis, Structure Elucidation, Biological Screening, Molecular Modeling and DNA Binding of Some Cu(II) Chelates Incorporating Imines Derived from Amino Acids. J. Mol. Struct. 2016, 1103 , 232–244. DOI: 10.1016/j.molstruc.2015.09.039.
  • Shokohipour, Z. ; Chiniforoshan, H. ; Momtazi-Borojeni, A. A. ; Notash, B. A. Novel Schiff Base Derived from the Gabapentin Drug and Copper (II) Complex: Synthesis, Characterization, Interaction with DNA/Protein and Cytotoxic Activity. J. Photochem. Photobiol. B 2016, 162 , 34–44. DOI: 10.1016/j.jphotobiol.2016.06.022.
  • Chandraleka, S. ; Ramya, K. ; Chandramohan, G. ; Dhanasekaran, D. ; Priyadharshini, A. ; Panneerselvam, A. Antimicrobial Mechanism of Copper (II) 1,10-Phenanthroline and 2,2′-Bipyridyl Complex on Bacterial and Fungal Pathogens. J. Saudi Chem. Soc. 2014, 18 , 953–962. DOI: 10.1016/j.jscs.2011.11.020.
  • Frisch, M. J. Gaussian 03, Revision C. 01 ; Gaussian, Inc.: Wallingford, CT, 2004.
  • Ditchfield, R. ; Hehre, W. J. ; Pople, J. A. Self Consistent Molecular Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54 , 724–728. DOI: 10.1063/1.1674902.
  • Hay, P. J. ; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82 , 270–283. DOI: 10.1063/1.448799.
  • Abdel Rahman, L. H. ; Abu-Dief, A. M. ; Hashem, N. A. ; Seleem, A. A. Recent Advances in Synthesis, Characterization and Biological Activity of Nano Sized Schiff Base Amino Acid M(II) Complexes. Int. J. Nano. Chem. 2015, 1 , 79–95.
  • Hegazy, W. H. ; Al-Motawa, I. H. Lanthanide Complexes of Substituted -Diketone Hydrazone Derivatives: Synthesis, Characterization, and Biological Activities. Bioinorg. Chem. Appl. 2011, 2011 , 1–10. DOI: 10.1155/2011/531946.
  • Abdel-Rahman, L. H. ; Adam, M. S. S. ; Abu-Dief, A. M. ; Moustafa, H. ; Basha, M. T. ; Aboraia, A. S. ; Al‐Farhan, B. S. ; Ahmed, H. E. Synthesis, Theoretical Investigations, Biocidal Screening, DNA Binding, in Vitro Cytotoxicity and Molecular Docking of Novel Cu(II), Pd(II) and Ag(I) chlorobenzylidene Schiff Base: Promising Antibiotic and Anticancer Agents. Appl. Organometal. Chem. 2018, 32 , e4527. DOI: 10.1002/aoc.4527.
  • Adam, M. S. S. ; Youssef, M. M. ; Abo Elghar, M. F. ; Hafez, A. M. ; El-Ayaan, U. Synthesis and Characterization of Binary and Ternary Oxovanadium Complexes of N,N’-(2-Pyridyl)Thiourea and Curcumin. Catalytic Oxidation Potential, Antibacterial, Antimicrobial, Antioxidant and DNA Interaction Studies. Appl. Organometal. Chem. 2017, 31 , e3650. DOI: 10.1002/aoc.3650.
  • Cohen, G. ; Eisenberg, H. Viscosity and Sedimentation Study of Sonicated DNA–Proflavine Complexes. Biopolymers 1969, 8 , 45–55. DOI: 10.1002/bip.1969.360080105.
  • Lekha, L. ; Kanmani, R. K. ; Rajagopal, G. ; Easwaramoorthy, D. J. Schiff Base Complexes of Rare Earth Metal Ions: Synthesis, Characterization and Catalytic Activity for the Oxidation of Aniline and Substituted Anilines. J. Organomet. Chem. 2014, 753 , 72–80. DOI: 10.1016/j.jorganchem.2013.12.014.
  • Adam, M. S. S. ; Mohamad, A. D. M. Catalytic (ep)Oxidation and Corrosion Inhibition Potentials of CuII and CoII Pyridinylimino Phenolate Complexes. Polyhedron 2018, 151 , 118–130. DOI: 10.1016/j.poly.2018.05.035.
  • Liu, E. ; Zhang, Y. Z. ; Li, L. ; Yang, C. ; Fettinger, J. ; Zhang, G. New Copper(II) Species from the Copper/2,2′-Bypyridine and Copper/4-Dimethylaminopyridine Catalyzed Aerobic Alcohol Oxidations. Polyhedron 2015, 99 , 223–229. DOI: 10.1016/j.poly.2015.07.080.
  • Rayati, S. ; Ghaemi, V. A. ; Sadeghzadeh, N. Electronic Effects of Substituents on the Oxidation Potentials of Vanadyl Complexes with Tetradentate Schiff Base Ligands Derived from 1,2-Propylenediamine. Catal. Commun. 2010, 11 , 792–796. DOI: 10.1016/j.catcom.2010.02.017.
  • Adam, M. S. S. ; Hafez, A. M. ; El-Ghamry, I. Catalytic Performance of Binary and Ternary Oxovanadium Complexes of Dipyridinyl-Urea in (ep)Oxidation of Cis-Cyclooctene and 1-Octene. React. Kinet. Mech. Cat. 2018, 124 , 779–805. DOI: 10.1007/s11144-018-1399-8.
  • Adam, M. S. S. Catalytic Activity of Nickel(II), Copper(II) and Oxovanadium(II)-Dihydroindolone Complexes towards Homogeneous Oxidation Reactions. Appl. Organometal. Chem. 2018, 32 , e4234. DOI: 10.1002/aoc.4234.
  • Banu, K. S. ; Chattopadhyay, T. ; Banerjee, A. ; Bhattacharya, S. ; Zangrando, E. ; Das, D. Catechol Oxidase Activity of Dinuclear Copper(II) Complexes of Robson Type Macrocyclic Ligands: Syntheses, X-Ray Crystal Structure, Spectroscopic Characterization of the Adducts and Kinetic Studies. J. Mol. Catal. A 2009, 310 , 34–41. DOI: 10.1016/j.molcata.2009.05.016.
  • Biswas, S. ; Dutta, A. ; Debnath, M. ; Dolai, M. ; Das, K. K. ; Ali, M. A Novel Thermally Stable Hydroperoxo–Copper(II) Complex in a Cu(N2O2) Chromophore of a Potential N4O2 Donor Schiff Base Ligand: Synthesis, Structure and Catalytic Studies. Dalton Trans. 2013, 42 , 13210–13219. DOI: 10.1039/c3dt51359a.
  • Abdel-Rahman, L. H. ; Abu-Dief, A. M. ; Adam, M. S. S. ; Hamdan, S. K. Some New Nano-Sized Mononuclear Cu(II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation. Catal. Lett. 2016, 146 , 1373–1396. DOI: 10.1007/s10562-016-1755-0.
  • Sun, Y. ; Bi, S. ; Song, D. ; Qiao, C. ; Mu, D. ; Zhang, H. Study on the Interaction Mechanism between DNA and the Main Active Components in Scutellaria baicalensis Georgi. Sens. Actuators B Chem. 2008, 128 , 799–810. DOI: 10.1016/j.snb.2007.09.082.
  • Adam, M. S. S. ; Al-Omair, M. A. ; Ullah, F. Catalytic Comparison of Various Polar Zn(II)- and VO(II)-Schiff Base Complexes in (ep)Oxidation Processes of 1,2-Cyclohexene and Cyclohexane. Res. Chem. Intermed. 2019, 45 , 4653–4675. DOI: 10.1007/s11164-019-03855-8.
  • Hoover, J. M. ; Ryland, B. L. ; Stahl, S. S. Copper/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Mechanistic Assessment of Different Catalyst Systems. ACS Catal. 2013, 3 , 2599–2605. DOI: 10.1021/cs400689a.
  • Abdel-Rahman, L. H. ; El-Khatib, R. M. ; Nassr, L. A. E. ; Abu-Dief, A. M. ; Lashin, F. E.-D. Design, Characterization, Teratogenicity Testing, Antibacterial, Antifungal and DNA Interaction of Few High Spin Fe(II) Schiff Base Amino Acid Complexes. Spectrochim. Acta A 2013, 111 , 266–276. DOI: 10.1016/j.saa.2013.03.061.
  • Sharma, A. K. ; Chandra, S. Complexation of Nitrogen and Sulphur Donor Schiff's Base Ligand to Cr(III) and Ni(II) Metal Ions: Synthesis, Spectroscopic and Antipathogenic Studies. Spectrochim. Acta A 2011, 78 , 337–342. DOI: 10.1016/j.saa.2010.10.017.
  • Yousef, T. A. ; Abu El-Reash, G. M. ; El-Gammal, O. A. ; Bedier, R. A. Co(II), Cu(II), Cd(II), Fe(III) and U(VI) Complexes Containing a NSNO Donor Ligand: Synthesis, Characterization, Optical Band Gap, in Vitro Antimicrobial and DNA Cleavage Studies. J. Mol. Struct. 2012, 1029 , 149–160. DOI: 10.1016/j.molstruc.2012.06.050.
  • Begum, M. S. A. ; Saha, S. ; Nethaji, M. ; Chakravarty, A. R. Iron(III) Schiff Base Complexes of Arginine and Lysine as Netropsin Mimics Showing at-Selective DNA Binding and Photonuclease Activity. J. Inorg. Biochem. 2010, 104 , 477–484. DOI: 10.1016/j.jinorgbio.2010.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.