589
Views
30
CrossRef citations to date
0
Altmetric
Articles

Green synthesis of zinc oxide nanoparticles using aqueous root extract of Sphagneticola trilobata Lin and investigate its role in toxic metal removal, sowing germination and fostering of plant growth

ORCID Icon, &
Pages 569-579 | Received 09 Oct 2019, Accepted 09 Jan 2020, Published online: 06 Feb 2020

References

  • Sumbal, A. N. ; Naz, S. ; Ali, J. S. ; Mannan, A. ; Zia, M. ; et al. Synthesis, Characterization and Biological Activities of Monometallic and Bimetallic Nanoparticles Using Mirabilis Jalapa Leaf Extract. Biotechnol. Rep. 2019, 22 , e00338. DOI: 10.1016/j.btre.2019.e00338.
  • Hua, M. ; Zhang, S. ; Pa, n. B. ; Zhang, W. ; Lv, L. ; Zhang, Q. ; et al. Heavy Metal Removal from Water/Wastewater by Nanosized Metal Oxides: A Review. J. Hazard. Mate 2012, 211 , 317–331. DOI: 10.1016/j.jhazmat.2011.10.016.
  • Tangjuank, S. ; Insuk, N. ; Tontrakoon, J. ; Udeye, V. ; et al. Adsorption of Lead (II) and Cadmium (II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells. World Acad. Sci. Eng. Technol. 2009, 28 , 110–116.
  • Hou, J. ; Wu, Y. ; Li, X. ; Wei, B. ; Li, S. ; Wang, X. ; et al. Toxic Effects of Different Types of Zinc Oxide Nanoparticles on Algae, Plants, Invertebrates, Vertebrates and Microorganisms. Chemosphere 2018, 16 , 852–860. DOI: 10.1016/j.chemosphere.2017.11.077.
  • Du, W. ; Sun, Y. ; Ji, R. ; Zhu, J. ; Wu, J. ; Guo, H. TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. J. Environ. Monit. 2011, 13 , 822–828. DOI: 10.1039/c0em00611d.
  • Mahajan, P. ; Dhoke, S.-K. ; Khanna, A. S. Effect of nano-ZnO Particle Suspension on Growth of Mung (Vigna Radiata) and Gram (Cicer Arietinum) Seedlings Using Plant Agar Method. J. Nanotechnol. 2011, 2011 , 1–7. DOI: 10.1155/2011/696535.
  • Moghaddasi, S. ; Fotovat, A. ; Karimzadeh, F. ; Khazaei, H.-R. ; Khorassani, R. ; Lakzian, A. Effects of Coated and Non-Coated ZnO Nanoparticles on Cucumber Seedlings Grown in Gel Chamber. Arch. Agron. Soil Sci. 2017, 63 , 1108–1120. DOI: 10.1080/03650340.2016.1256475.
  • Srivastava, G. ; Das, C.-K. ; Das, A. ; Singh, S.-K. ; Roy, M. ; Kim, H. ; Sethy, N. ; Kumar, A. ; Sharma, R.-K. ; Singh, S.-K. ; et al. Seed Treatment with Iron Pyrite (FeS2) Nanoparticles Increases the Production of Spinach. Rsc Adv. 2014, 4 , 58495–58128. DOI: 10.1039/C4RA06861K.
  • Faizan, M. ; Faraz, A. ; Yusuf, M. ; Khan, S.-T. ; Hayat, S. Zinc Oxide Nanoparticle-Mediated Changes in Photosynthetic Efficiency and Antioxidant System of Tomato Plants. Photosynthetica 2018, 56 , 678–686. DOI: 10.1007/s11099-017-0717-0.
  • Zhang, T. ; Sun, H. ; Lv, Z. ; Cui, L. ; Mao, H. ; Kopittke, P.-M. Using Synchrotron-Based Approaches to Examine the Foliar Application of ZnSO4 and ZnO Nanoparticles for Field-Grown Winter Wheat. J. Agric. Food Chem. 2018, 66 , 2572–2579. DOI: 10.1021/acs.jafc.7b04153.
  • Zhang, R. ; Zhang, H. ; Tu, C. ; Hu, X. ; Li, L. ; Luo, Y. ; Christie, P. Phytotoxicity of ZnO Nanoparticles and the Released Zn (II) Ion to Corn (Zea Mays L.) and Cucumber (Cucumis Sativus L.) during Germination. Environ. Sci. Pollut. Res. 2015, 22 , 11109–11117. DOI: 10.1007/s11356-015-4325-x.
  • Fageria, P. ; Gangopadhyay, S. ; Pande, S. ; et al. Synthesis of ZnO/Au and ZnO/Ag Nanoparticles and Their Photo Catalytic Application Using UV and Visible Light. R. Soc. Chem. Adv. 2014, 4 , 24962–24972. DOI: 10.1039/C4RA03158J.
  • Zheng, Y. ; Zheng, L. ; Zhan, Y. ; Lin, X. ; Zheng, Q. ; Wei, K. Ag/ZnO Heterostructure Nanocrystals: synthesis, Characterization, and Photo Catalysis. Inorg. Chem. 2007, 46 , 6980–6986. DOI: 10.1021/ic700688f.
  • Liu, H. R. ; Shao, G. X. ; Zhao, J. F. ; Zhang, Z. X. ; Zhang, Y. ; Liang, J. ; Liu, X. G. ; Jia, H. S. ; Xu, B. S. Worm-like Ag/ZnO Core–Shell Heterostructural Composites: fabrication, Characterization, and Photocatalysis. J. Phys. Chem. C 2012, 116 , 16182–16190.
  • Sudhakar, J. V. ; et al. Additions to the Flora of South Indian States. Ann. Plant Sci. 2015, 4 , 1158–1161.
  • Al-Senani, G. M. ; Al-Fawzan, F. F. Adsorption Study of Heavy Metal Ions from Aqueous Solution by Nanoparticle of Wild Herbs. Egypt J. Aquat. Res. 2018, 44 , 187–194. DOI: 10.1016/j.ejar.2018.07.006.
  • Sanchez Hachair, A. ; Hofmann, A. Hexavalent Chromium Quantification in Solution: Comparing Direct UV–Visible Spectrometry with 1,5-Diphenylcarbazide Colorimetry. C. R. Chim. 2018, 21 , 890–896. DOI: 10.1016/j.crci.2018.05.002.
  • Narendhran, S. ; Rajiv, P. ; et al. Influence of Zinc Oxide Nanoparticles on Growth of Sesamum Indicum l. in Zinc Deficient Soil. Int. J. Pharm. Pharm. Sci. 2016, 8 , 365–371.
  • Sabir, S. ; Arshad, M. ; Chaudhari, S. K. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: synthesis and Applications. Sci. World J. 2014, 2014 , 1–8. DOI: 10.1155/2014/925494.
  • Kalishwaralal, K. ; Deepak, V. ; Ram Kumar Pandian, S. ; Kottaisamy, M. ; BarathManiKanth, S. ; Kartikeyan, B. ; Gurunathan, S. Biosynthesis of Silver and Gold Nanoparticles Using Brevibacterium casei. Colloids Surf B Biointerfaces 2010, 77 , 257–262. DOI: 10.1016/j.colsurfb.2010.02.007.
  • Swamy, M.-K. ; Akhtar, M.-S. ; Mohanty, S.-K. ; Sinniah, U.-R. ; et al. Synthesis and Characterization of Silver Nanoparticles Using Fruit Extract of Momordica Cymbalaria and Assessment of Their in Vitro Antimicrobial, Antioxidant and Cytotoxicity Activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 151 , 939–944
  • Ahmed, S. ; Ahmad, M. ; Swami, B.-L. ; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7 , 17–28. DOI: 10.1016/j.jare.2015.02.007.
  • Ashokkumar, S. ; Ravi, S. ; Kathiravan, V. ; Velmurugan, S. Synthesis of Silver Nanoparticles Using A. indicum Leaf Extract and Their Antibacterial Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 134 , 34–39.
  • Wasewar, A.-L. ; et al. Adsorption of Metals onto Tea Factory Waste: A Review. IJRRAS 2010, 3 , 303–322.
  • Samindika, A. 2013. A Comprehensive Study of Cd (II) Removal from Aqueous Solution via Adsorption and Solar Photocatalysis. ETDs. 1783.
  • Al-Qahtani, K.-M. ; et al. Assessment and Treatment Some of the Local Seeds Then Used in Removal of Heavy Metals. J. Am. Sci. 2015, 11 , 198–203.
  • Jing, H. ; Lo, I. M. C. ; Chen, G. Fast Removal and Recovery of Cr (VI) Using Surface-Modified Jacobsite (MnFe2O4) Nanoparticles. Langmuir 2005, 21 , 11173–11179.
  • Abril, M. ; Ruiz, H. ; Cumbal, L. H. Biosynthesis of Multicomponent Nanoparticles with Extract of Mortiño (Vaccinium Floribundum Kunth) Berry: Application on Heavy Metals Removal from Water and Immobilization in Soils. J. Nanotechnol. 2018, 2018 , 1–10. DOI: 10.1155/2018/9504807.
  • Lin, D. ; Xing, B. Phytotoxicity of Nanoparticles: inhibition of Seed Germination and Root Growth. Environ. Pollut. 2007, 150 , 243–250. DOI: 10.1016/j.envpol.2007.01.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.