140
Views
3
CrossRef citations to date
0
Altmetric
Article

Characterization of thin film of CuO nanorods grown with a chemical deposition method: a study of significance of deposition time

&
Pages 764-769 | Received 22 Sep 2019, Accepted 09 Jan 2020, Published online: 19 Feb 2020

References

  • Ahmad, R.; Majhi, S. M.; Zhang, X.; Swager, T. M.; Salama, K. N. Recent Progress and Perspectives of Gas Sensors Based on Vertically Oriented ZnO Nanomaterials. Adv. Colloid Interface Sci. 2019, 270, 1–27. DOI: 10.1016/j.cis.2019.05.006.
  • Chowdhuri, A.; Gupta, V.; Sreenivas, K.; Kumar, R.; Mozumdar, S.; Patanjali, P. K. Response Speed of SnO2-Based H2S Gas Sensors with CuO Nanoparticles. Appl. Phys. Lett. 2004, 84, 1180–1182. DOI: 10.1063/1.1646760.
  • Ahmad, R.; Tripathy, N.; Ahn, M.-S.; Bhat, K. S.; Mahmoudi, T.; Wang, Y.; Yoo, J.-Y.; Kwon, D.-W.; Yang, H.-Y.; Hahn, Y.-B. Highly Efficient Non-Enzymatic Glucose Sensor Based on CuO Modified Vertically-Grown ZnO Nanorods on Electrode. Sci. Rep. 2017, 7, 5715. DOI: 10.1038/s41598-017-06064-8.
  • Zhang, W.; Ma, G.; Gu, H.; Yang, Z.; Cheng, H. A New Lithium-Ion Battery: CuO Nanorod Array Anode versus Spinel LiNi0.5Mn1.5O4 Cathode. J. Power Sources 2015, 273, 561–565. DOI: 10.1016/j.jpowsour.2014.09.135.
  • Tang, C.; Zhang, H.; Jiao, D.; Hu, R.; Liu, Z. Hierarchical C-Doped CuO Nanorods on Carbon Cloth as Flexible Binder-Free Anode for Lithium Storage. Mater. Des. 2019, 162, 52–59. DOI: 10.1016/j.matdes.2018.11.042.
  • So, J.-Y.; Lee, C.-H.; Kim, J.-E.; Kim, H.-J.; Jun, J.; Bae, W.-G. Hierarchically Nanostructured CuO–Cu Current Collector Fabricated by Hybrid Methods for Developed Li-Ion Batteries. Materials 2018, 11, 1018. DOI: 10.3390/ma11061018.
  • Kumar, S. K.; Suresh, S.; Murugesan, S.; Raj, S. P. CuO Thin Films Made of Nanofibers for Solar Selective Absorber Applications. Solar Energy 2013, 94, 299–304. DOI: 10.1016/j.solener.2013.05.018.
  • Tsai, C.-H.; Fei, P.-H.; Lin, C.-M.; Shiu, S.-L. CuO and CuO/Graphene Nanostructured Thin Films as Counter Electrodes for Pt-Free Dye-Sensitized Solar Cells. Coatings 2018, 8, 21. DOI: 10.3390/coatings8010021.
  • Sun, Q.; Zhou, S.; Shi, X.; Wang, X.; Gao, L.; Li, Z.; Hao, Y. Efficiency Enhancement of Perovskite Solar Cells via Electrospun CuO Nanowires as Buffer Layers. ACS Appl. Mater. Interfaces 2018, 10, 11289–11296. DOI: 10.1021/acsami.7b19335.
  • Singh, G.; Panday, S.; Rawat, M.; Kukkar, D.; Basu, S. Facile Synthesis of CuO Semiconductor Nanorods for Time Dependent Study of Dye Degradation and Bioremediation Applications. J. Nano Res. 2017, 46, 154–164. DOI: 10.4028/www.scientific.net/JNanoR.46.154.
  • Kumar, K.; Priya, A.; Arun, A.; Hait, S.; Chowdhury, A. Antibacterial and Natural Room-Light Driven Photocatalytic Activities of CuO Nanorods. Mater. Chem. Phys. 2019, 226, 106–112. DOI: 10.1016/j.matchemphys.2019.01.020.
  • Grez, P.; Rojas, C.; Segura, I.; Heyser, C.; Ballesteros, L.; Celedón, C.; Schrebler, R. Photoelectrochemical Properties of Nanostructured Copper Oxide Formed Sonoelectrochemically. Int. J. Electrochem. Sci. 2017, 12, 7240–7248. DOI: 10.20964/2017.08.28.
  • Moumen, A.; Hartiti, B.; Comini, E.; Khalidi, Z. E.; Munasinghe Arachchige, H. M. M.; Fadili, S.; Thevenin, P. Preparation and Characterization of Nanostructured CuO Thin Films Using Spray Pyrolysis Technique. Superlattice Microst. 2019, 127, 2–10. DOI: 10.1016/j.spmi.2018.06.061.
  • Zu Niga, A.; Fonseca, L.; Souza, J. A.; Rivaldo-Gomez, C.; Díaz Pomar, C.; Criado, D. Anomalous Ferromagnetic Behavior and Size Effects in CuO Nanowires. J. Magn. Magn. Mater. 2019, 471, 77–81. DOI: 10.1016/j.jmmm.2018.09.048.
  • Liu, L.; Hong, K.; Hu, T.; Xu, M. Synthesis of Aligned Copper Oxide Nanorod Arrays by a Seed Mediated Hydrothermal Method. J. Alloys Compd. 2012, 511, 195–197. DOI: 10.1016/j.jallcom.2011.09.028.
  • Yathisha, R. O.; Nayaka, Y. A. Synthesis of Copper Oxide Nano‐Rods by Microwave‐Assisted Combustion Route and Their Characterization Studies. Int. J. Nanoelectr. Mater. 2018, 11, 233–240.
  • Xue, Z.; Li, M.; Rao, H.; Yin, B.; Zhou, X.; Liu, X.; Lu, X. Phase Transformation-Controlled Synthesis of CuO Nanostructures and Their Application as an Improved Material in a Carbon-Based Modified Electrode. RSC Adv. 2016, 6, 12829–12836. DOI: 10.1039/C5RA22297D.
  • Sun, S.; Zhang, X.; Sun, Y.; Yang, S.; Song, X.; Yang, Z. Facile Water-Assisted Synthesis of Cupric Oxide Nanourchins and Their Application as Nonenzymatic Glucose Biosensor. ACS Appl. Mater. Interfaces 2013, 5, 4429–4437. DOI: 10.1021/am400858j.
  • Oruc, C.; Altundal, A. Structural and Dielectric Properties of CuO Nanoparticles. Ceram. Int. 2017, 43, 10708–10714.
  • Abaker, M.; Umar, A.; Baskoutas, S.; Kim, S. H.; Hwang, S. W. Structural and Ptical Properties of CuO Layered Hexagonal Discs Synthesized by a Low-Temperature Hydrothermal Process. J. Phys. D: Appl. Phys. 2011, 44, 155405. DOI: 10.1088/0022-3727/44/15/155405.
  • Du, Y.; Gao, X.; Zhang, X.; Meng, X. Characterization of the Microstructure and the Optical and Electrical Properties of the Direct-Current Magnetron Sputtered CuO Films at Different Substrate Temperatures. Phys. B Condens. Matter 2018, 546, 28–32. DOI: 10.1016/j.physb.2018.07.013.
  • Farbod, M.; Meamar Ghaffari, N.; Kazeminezhad, I. Effect of Growth Parameters on Photocatalytic Properties of CuO Nanowires Fabricated by Direct Oxidation. Mater. Lett. 2012, 81, 258–260. DOI: 10.1016/j.matlet.2012.05.017.
  • Oh, H.; Ryu, B. H.; Lee, W. J. Effects of Copper Precursor Concentration on the Growth of Cupric Oxide Nanorods for Photoelectrode Using a Modified Chemical Bath Deposition Method. J. Alloys Compd. 2015, 620, 55–59. DOI: 10.1016/j.jallcom.2014.09.108.
  • Aref, A. A.; Xiong, L.; Yan, N.; Abdulkarem, A. M.; Yu, Y. Cu2O Nanorods Thin Films Prepared by CBD Method with CTAB: Substrate Effect, Deposition Mechanism and Photoelectrochemical Properties. Mater. Chem. Phys. 2011, 127, 433–439. DOI: 10.1016/j.matchemphys.2011.02.029.
  • Ahmad, R.; Wolfbeis, O. S.; Hahn, Y.-B.; Alshareef, H. N.; Torsi, L.; Salama, K. N. Deposition of Nanomaterials: A Crucial Step in Biosensor Fabrication. Mater. Today Commun. 2018, 17, 289–321. DOI: 10.1016/j.mtcomm.2018.09.024.
  • Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. A Highly Sensitive Nonenzymatic Sensor Based on Fe2O3 Nanoparticle Coated ZnO Nanorods for Electrochemical Detection of Nitrite. Adv. Mater. Interfaces 2017, 4, 1700691. DOI: 10.1002/admi.201700691.
  • Oh, H. B.; Ryu, H.; Lee, W. J. Effects of Growth Temperature on Cupric Oxide Nanorod Photoelectrodes Using a Modified Chemical Bath Deposition. J. Electrochem. Soc. 2014, 161, H633–636. DOI: 10.1149/2.0491410jes.
  • Chang, Y.; Zeng, H. C. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals. Cryst. Growth. Des. 2004, 4, 273–278. DOI: 10.1021/cg034146w.
  • Shariffudin, S. S.; Khalid, S. S.; Sahat, N. M.; Sarah, M. S. P.; Hashim, H. Preparation and Characterization of Nanostructured CuO Thin Films Using Sol-Gel Dip Coating. Mater. Sci. Eng. 2015, 99, 1–7.
  • Mousali, E.; Zanjanchi, M. A. Electrochemical Synthesis of Copper(II) Oxide Nanorods and Their Application in Photocatalytic Reactions. J. Solid State Electrochem. 2019, 23, 925–935. DOI: 10.1007/s10008-019-04194-9.
  • Dhaouadi, M.; Jlassi, M.; Sta, I.; Ben Miled, I.; Mousdis, G.; Kompitsas, M.; Dimassi, W. Physical Properties of Copper Oxide Thin Films Prepared by Sol–Gel Spin–Coating Method. Am. J. Phys. App. 2018, 6, 43–50. DOI: 10.11648/j.ajpa.20180602.13.
  • Hong, R.; Huang, J.; He, H.; Fan, Z.; Shao, J. Influence of Different Post-Treatments on the Structure and Optical Properties of Zinc Oxide Thin Films. J. Appl. Surf. Sci. 2005, 242, 346–352. DOI: 10.1016/j.apsusc.2004.08.037.
  • Borgohain, K.; Mahamuni, S. Size Effects on the Magnetic and Optical Properties of CuO Nanoparticles. J. Mater. Res. 2002, 17, 1220–1223. DOI: 10.1557/JMR.2002.0180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.