225
Views
6
CrossRef citations to date
0
Altmetric
Review

Applications and hazards associated with carbon nanotubes in biomedical sciences

, , , , &
Pages 741-752 | Received 21 Nov 2019, Accepted 09 Jan 2020, Published online: 17 Feb 2020

References

  • Helland, A.; Wick, P.; Koehler, A.; Schmid, K.; Som, C. Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes. Ciên. Saúde Colet. 2008, 13, 441–452. DOI: 10.1590/S1413-81232008000200019.
  • Shvedova, A.; Kisin, E. R.; Porter, D.; Schulte, P.; Kagan, V. E.; Fadeel, B.; Castranova, V. Mechanisms of Pulmonary Toxicity and Medical Applications of Carbon Nanotubes: Two Faces of Janus?. Pharmacol. Ther. 2009, 121, 192–204. DOI: 10.1016/j.pharmthera.2008.10.009.
  • Ding, Z. Y.; Sun, B. M.; Jia, B.; Ding, X. L. Flame Synthesis of Carbon Nanotubes and Nanocapsules. In Materials Science Forum; Wang, R., Wu, Y., Wu, X., Eds.; Trans Tech Publ, 2011; pp. 116–121. DOI: 10.4028/www.scientific.net/MSF.688.116.
  • Coiffic, J. C.; Fayolle, M.; Maitrejean, S.; Foa Torres, L. E. F.; Le Poche, H. Conduction Regime in Innovative Carbon Nanotube via Interconnect Architectures. Appl. Phys. Lett. 2007, 91, 252107. DOI: 10.1063/1.2826274.
  • Murray, A. R.; Kisin, E. R.; Tkach, A. V.; Yanamala, N.; Mercer, R.; Young, S.-H.; Fadeel, B.; Kagan, V. E.; Shvedova, A. A. Factoring-In Agglomeration of Carbon Nanotubes and Nanofibers for Better Prediction of Their Toxicity versus Asbestos. Part. Fibre Toxicol. 2012, 9, 10. DOI: 10.1186/1743-8977-9-10.
  • Singh, B.; Babu Rao, C. H.; Pispati, V.; Pathipati, H.; Murthy, N.; Prassana, S. R. V.; Rathode, B. G. Carbon Nanotubes. A Novel Drug Delivery System. Int. J. Res. Pharm. Chem. 2012, 2, 523–532.
  • Zhang, W.; Zhang, Z.; Zhang, Y. The Application of Carbon Nanotubes in Target Drug Delivery Systems for Cancer Therapies. Nanoscale Res. Lett. 2011, 6, 555. DOI: 10.1186/1556-276X-6-555.
  • Zhang, Y.; Bai, Y.; Yan, B. Functionalized Carbon Nanotubes for Potential Medicinal Applications. Drug Discov. Today 2010, 15, 428–435. DOI: 10.1016/j.drudis.2010.04.005.
  • Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. ACS Nano 2007, 1, 50–56. DOI: 10.1021/nn700040t.
  • Yang, W.; Thordarson, P.; Gooding, J. J.; Ringer, S. P.; Braet, F. Carbon Nanotubes for Biological and Biomedical Applications. Nanotechnology 2007, 18, 412001. DOI: 10.1088/0957-4484/18/41/412001.
  • Liao, H.; Paratala, B.; Sitharaman, B.; Wang, Y. Applications of Carbon Nanotubes in Biomedical Studies. In Biomedical Nanotechnology; Humana Press, 2011; pp. 223–241.
  • Elhissi, A. M. A.; Ahmed, W.; Hassan, I. U.; Dhanak, V. R.; D'Emanuele, A. Carbon Nanotubes in Cancer Therapy and Drug Delivery. J. Drug Deliv. 2012, 2012, 1–10. DOI: 10.1155/2012/837327.
  • Chen, Z.; Pierre, D.; He, H.; Tan, S.; Pham-Huy, C.; Hong, H.; Huang, J. Adsorption Behavior of Epirubicin Hydrochloride on Carboxylated Carbon Nanotubes. Int. J. Pharm. 2011, 405, 153–161. DOI: 10.1016/j.ijpharm.2010.11.034.
  • Xiao, D.; Dramou, P.; He, H.; Pham-Huy, L. A.; Li, H.; Yao, Y.; Pham-Huy, C. Magnetic Carbon Nanotubes: Synthesis by a Simple Solvothermal Process and Application in Magnetic Targeted Drug Delivery System. J. Nanopart. Res. 2012, 14, 984. DOI: 10.1007/s11051-012-0984-4.
  • Madani, S. Y.; Naderi, N.; Dissanayake, O.; Tan, A.; Seifalian, A. M. A New Era of Cancer Treatment: Carbon Nanotubes as Drug Delivery Tools. Int. J. Nanomed. 2011, 6, 2963–2979. DOI: 10.2147/IJN.S16923.
  • Li, R.; Wu, R.; Zhao, L.; Wu, M.; Yang, L.; Zou, H. P-Glycoprotein Antibody Functionalized Carbon Nanotube Overcomes the Multidrug Resistance of Human Leukemia Cells. ACS Nano 2010, 4, 1399–1408. DOI: 10.1021/nn9011225.
  • Razzazan, A.; Atyabi, F.; Kazemi, B.; Dinarvand, R. In Vivo Drug Delivery of Gemcitabine with PEGylated Single-Walled Carbon Nanotubes. Mater. Sci. Eng. C 2016, 62, 614–625. DOI: 10.1016/j.msec.2016.01.076.
  • Cherukuri, P.; Gannon, C. J.; Leeuw, T. K.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A.; Weisman, R. B. Mammalian Pharmacokinetics of Carbon Nanotubes Using Intrinsic Near-Infrared Fluorescence. Proc. Natl. Acad. Sci. USA 2006, 103, 18882–18886. DOI: 10.1073/pnas.0609265103.
  • Torchilin, V. Tumor Delivery of Macromolecular Drugs Based on the EPR Effect. Ad. Drug Deliv. Rev. 2011, 63, 131–135. DOI: 10.1016/j.addr.2010.03.011.
  • Jain, R. K.; Stylianopoulos, T. Delivering Nanomedicine to Solid Tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. DOI: 10.1038/nrclinonc.2010.139.
  • Pérez-Herrero, E.; Fernández-Medarde, A. Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. DOI: 10.1016/j.ejpb.2015.03.018.
  • Din, F. u.; Aman, W.; Ullah, I.; Qureshi, O. S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective Use of Nanocarriers as Drug Delivery Systems for the Treatment of Selected Tumors. Int. J. Nanomedicine 2017, 12, 7291–7309. DOI: 10.2147/IJN.S146315.
  • Arpicco, S.; Milla, P.; Stella, B.; Dosio, F. Hyaluronic Acid Conjugates as Vectors for the Active Targeting of Drugs, Genes and Nanocomposites in Cancer Treatment. Molecules 2014, 19, 3193–3230. DOI: 10.3390/molecules19033193.
  • Xu, H.; Meng, J.; Kong, H. What Are Carbon Nanotubes’ Roles in Anti-Tumor Therapies? Sci. China Chem. 2010, 53, 2250–2256. DOI: 10.1007/s11426-010-4117-6.
  • Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug Delivery with Carbon Nanotubes for in Vivo Cancer Treatment. Cancer Res. 2008, 68, 6652–6660. DOI: 10.1158/0008-5472.CAN-08-1468.
  • Liu, J.; Cui, L.; Losic, D. Graphene and Graphene Oxide as New Nanocarriers for Drug Delivery Applications. Acta Biomater. 2013, 9, 9243–9257. DOI: 10.1016/j.actbio.2013.08.016.
  • Peretz, S.; Regev, O. Carbon Nanotubes as Nanocarriers in Medicine. Curr. Opin. Colloid Interface Sci. 2012, 17, 360–368. DOI: 10.1016/j.cocis.2012.09.001.
  • Shi Kam, N. W.; Jessop, T. C.; Wender, P. A.; Dai, H. Nanotube Molecular Transporters: Internalization of Carbon Nanotube − Protein Conjugates into Mammalian Cells. J. Am. Chem. Soc. 2004, 126, 6850–6851. DOI: 10.1021/ja0486059.
  • Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug Resistance in Cancer: Role of ATP–Dependent Transporters. Nat. Rev. Cancer 2002, 2, 48–58. DOI: 10.1038/nrc706.
  • Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D.; Prato, M.; Bianco, A.; Kostarelos, K. Multiwalled Carbon Nanotube–Doxorubicin Supramolecular Complexes for Cancer Therapeutics. Chem. Commun. 2008, 459–461. DOI: 10.1039/B712350G.
  • Chacko, R. T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer Nanogels: A Versatile Nanoscopic Drug Delivery Platform. Adv. Drug Deliv. Rev. 2012, 64, 836–851. DOI: 10.1016/j.addr.2012.02.002.
  • Arsawang, U.; Saengsawang, O.; Rungrotmongkol, T.; Sornmee, P.; Wittayanarakul, K.; Remsungnen, T.; Hannongbua, S. How Do Carbon Nanotubes Serve as Carriers for Gemcitabine Transport in a Drug Delivery System?. J. Mol. Graphics Modell. 2011, 29, 591–596. doi:10.1016/j.jmgm.2010.11.002.
  • Pastorin, G. Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option? Pharm. Res. 2009, 26, 746–769. DOI: 10.1007/s11095-008-9811-0.
  • Luo, X.; Matranga, C.; Tan, S.; Alba, N.; Cui, X. T. Carbon Nanotube Nanoreservior for Controlled Release of Anti-Inflammatory Dexamethasone. Biomaterials 2011, 32, 6316–6323. DOI: 10.1016/j.biomaterials.2011.05.020.
  • Mozaffarian, D.; Benjamin, E. J.; Go, A. S.; Arnett, D. K.; Blaha, M. J.; Cushman, M.; Das, S. R.; de Ferranti, S.; Després, J.-P.; Fullerton, H. J.; et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016, 133, e38–e48. DOI: 10.1161/CIR.0000000000000350.
  • Poole, J. E.; Johnson, G. W.; Hellkamp, A. S.; Anderson, J.; Callans, D. J.; Raitt, M. H.; Reddy, R. K.; Marchlinski, F. E.; Yee, R.; Guarnieri, T.; et al. Prognostic Importance of Defibrillator Shocks in Patients with Heart Failure. N. Engl. J. Med. 2008, 359, 1009–1017. DOI: 10.1056/NEJMoa071098.
  • Hodgkinson, C. P.; Kang, M. H.; Dal-Pra, S.; Mirotsou, M.; Dzau, V. J. MicroRNAs and Cardiac Regeneration. Circ. Res. 2015, 116, 1700–1711. DOI: 10.1161/CIRCRESAHA.116.304377.
  • Ptaszek, L. M.; Mansour, M.; Ruskin, J. N.; Chien, K. R. Towards Regenerative Therapy for Cardiac Disease. Lancet 2012, 379, 933–942. DOI: 10.1016/S0140-6736(12)60075-0.
  • Hunt, J. A. Regenerative Medicine: Materials in a Cellular World. Nat. Mater. 2008, 7, 617–618. DOI: 10.1038/nmat2242.
  • De Lange, W.; Hegge, L. F.; Grimes, A. C.; Tong, C. W.; Brost, T. M.; Moss, R. L.; Ralphe, J. C. Neonatal Mouse–Derived Engineered Cardiac Tissue: A Novel Model System for Studying Genetic Heart Disease. Circ. Res. 2011, 109, 8–19. DOI: 10.1161/CIRCRESAHA.111.242354.
  • Shin, S. R.; Jung, S. M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S. B.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; et al. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano 2013, 7, 2369–2380. DOI: 10.1021/nn305559j.
  • Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; Jin, H.; Parker, K. K.; Langer, R.; Kohane, D. S.; et al. Nanowired Three-Dimensional Cardiac Patches. Nat. Nanotechnol. 2011, 6, 720–725. DOI: 10.1038/nnano.2011.160.
  • Tian, B.; Liu, J.; Dvir, T.; Jin, L.; Tsui, J. H.; Qing, Q.; Suo, Z.; Langer, R.; Kohane, D. S.; Lieber, C. M.; et al. Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues. Nat. Mater. 2012, 11, 986–994. DOI: 10.1038/nmat3404.
  • Tosun, Z.; McFetridge, P. A Composite SWNT–Collagen Matrix: Characterization and Preliminary Assessment as a Conductive Peripheral Nerve Regeneration Matrix. J. Neural Eng. 2010, 7, 066002. DOI: 10.1088/1741-2560/7/6/066002.
  • Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; et al. Robust Neurite Extension following Exogenous Electrical Stimulation within Single Walled Carbon Nanotube-Composite Hydrogels. Acta Biomater. 2016, 39, 34–43. DOI: 10.1016/j.actbio.2016.05.014.
  • Sun, H.; Zhou, J.; Huang, Z.; Qu, L.; Lin, N.; Liang, C.; Dai, R.; Tang, L.; Tian, F. Carbon Nanotube-Incorporated Collagen Hydrogels Improve Cell Alignment and the Performance of Cardiac Constructs. Int. J. Nanomedicine 2017, 12, 3109–3120. DOI: 10.2147/IJN.S128030.
  • Bianco, A.; Cheng, H.-M.; Enoki, T.; Gogotsi, Y.; Hurt, R. H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C. R.; Tascon, J. M. D.; et al. All in the Graphene Family–a Recommended Nomenclature for Two-Dimensional Carbon Materials. Carbon 2013, 65, 1–6. DOI: 10.1016/j.carbon.2013.08.038.
  • Battigelli, A.; Ménard-Moyon, C.; Bianco, A. Carbon Nanomaterials as New Tools for Immunotherapeutic Applications. J. Mater. Chem. B 2014, 2, 6144–6156. DOI: 10.1039/C4TB00563E.
  • Aoki, N.; Akasaka, T.; Watari, F.; Yokoyama, A. Carbon Nanotubes as Scaffolds for Cell Culture and Effect on Cellular Functions. Dent. Mater. J. 2007, 26, 178–185. DOI: 10.4012/dmj.26.178.
  • Warowicka, A.; Maciejewska, B. M.; Litowczenko, J.; Kościński, M.; Baranowka-Korczyc, A.; Jasiurkowska-Delaporte, M.; Koziol, K. K.; Jurga, S. MWCNT Based Matrices as a Platform for Adhesion and Growth of Cells. Compos. Sci. Technol. 2016, 136, 29–38. DOI: 10.1016/j.compscitech.2016.09.026.
  • Siqueira, I. A. In Vitro and in Vivo Studies of Novel Poly (D, L-Lactic Acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration. ACS Appl. Mater. Interfaces 2015, 7, 9385–9398. DOI: 10.1021/acsami.5b01066.
  • Hirata, E.; Akasaka, T.; Uo, M.; Takita, H.; Watari, F.; Yokoyama, A. Carbon Nanotube-Coating Accelerated Cell Adhesion and Proliferation on Poly (L-Lactide). Appl. Surf. Sci. 2012, 262, 24–27. DOI: 10.1016/j.apsusc.2012.01.012.
  • Hirata, E.; Uo, M.; Nodasaka, Y.; Takita, H.; Ushijima, N.; Akasaka, T.; Watari, F.; Yokoyama, A. 3D Collagen Scaffolds Coated with Multiwalled Carbon Nanotubes: Initial Cell Attachment to Internal Surface. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 544–550. DOI: 10.1002/jbm.b.31613.
  • Hirata, E.; Uo, M.; Takita, H.; Akasaka, T.; Watari, F.; Yokoyama, A. Multiwalled Carbon Nanotube-Coating of 3D Collagen Scaffolds for Bone Tissue Engineering. Carbon 2011, 49, 3284–3291. DOI: 10.1016/j.carbon.2011.04.002.
  • Hirata, E.; Ménard-Moyon, C.; Venturelli, E.; Takita, H.; Watari, F.; Bianco, A.; Yokoyama, A. Carbon Nanotubes Functionalized with Fibroblast Growth Factor Accelerate Proliferation of Bone Marrow-Derived Stromal Cells and Bone Formation. Nanotechnology 2013, 24, 435101. DOI: 10.1088/0957-4484/24/43/435101.
  • Newman, P.; Minett, A.; Ellis-Behnke, R.; Zreiqat, H. Carbon Nanotubes: Their Potential and Pitfalls for Bone Tissue Regeneration and Engineering. Nanomedicine 2013, 9, 1139–1158. DOI: 10.1016/j.nano.2013.06.001.
  • Bates, K.; Kostarelos, K. Carbon Nanotubes as Vectors for Gene Therapy: Past Achievements, Present Challenges and Future Goals. Adv. Drug Deliv. Rev. 2013, 65, 2023–2033. DOI: 10.1016/j.addr.2013.10.003.
  • Atkinson, H.; Chalmers, R. Delivering the Goods: Viral and Non-Viral Gene Therapy Systems and the Inherent Limits on Cargo DNA and Internal Sequences. Genetica 2010, 138, 485–498. DOI: 10.1007/s10709-009-9434-3.
  • Wang, T.; Upponi, J. R.; Torchilin, V. P. Design of Multifunctional Non-Viral Gene Vectors to Overcome Physiological Barriers: Dilemmas and Strategies. Int. J. Pharm. 2012, 427, 3–20. DOI: 10.1016/j.ijpharm.2011.07.013.
  • Gao, L.; Nie, L.; Wang, T.; Qin, Y.; Guo, Z.; Yang, D.; Yan, X. Carbon Nanotube Delivery of the GFP Gene into Mammalian Cells. ChemBioChem 2006, 7, 239–242. DOI: 10.1002/cbic.200500227.
  • Nunes, A.; Amsharov, N.; Guo, C.; Van den Bossche, J.; Santhosh, P.; Karachalios, T. K.; Nitodas, S. F.; Burghard, M.; Kostarelos, K.; Al-Jamal, K. T.; et al. Hybrid Polymer-Grafted Multiwalled Carbon Nanotubes for in Vitro Gene Delivery. Small 2010, 6, 2281–2291. DOI: 10.1002/smll.201000864.
  • Qin, W.; Yang, K.; Tang, H.; Tan, L.; Xie, Q.; Ma, M.; Zhang, Y.; Yao, S. Improved GFP Gene Transfection Mediated by Polyamidoamine Dendrimer-Functionalized Multi-Walled Carbon Nanotubes with High Biocompatibility. Colloids Surf. B Biointerfaces 2011, 84, 206–213. DOI: 10.1016/j.colsurfb.2011.01.001.
  • Paul, A.; Shao, W.; Shum-Tim, D.; Prakash, S. The Attenuation of Restenosis following Arterial Gene Transfer Using Carbon Nanotube Coated Stent Incorporating TAT/DNA Ang1+ Vegf Nanoparticles. Biomaterials 2012, 33, 7655–7664. DOI: 10.1016/j.biomaterials.2012.06.096.
  • Behnam, B.; Shier, W. T.; Nia, A. H.; Abnous, K.; Ramezani, M. Non-Covalent Functionalization of Single-Walled Carbon Nanotubes with Modified Polyethyleneimines for Efficient Gene Delivery. Int. J. Pharm. 2013, 454, 204–215. DOI: 10.1016/j.ijpharm.2013.06.057.
  • Carthew, R. W.; Sontheimer, E. J. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. DOI: 10.1016/j.cell.2009.01.035.
  • Krajcik, R.; Jung, A.; Hirsch, A.; Neuhuber, W.; Zolk, O. Functionalization of Carbon Nanotubes Enables Non-Covalent Binding and Intracellular Delivery of Small Interfering RNA for Efficient Knock-down of Genes. Biochem. Biophys. Res. Commun. 2008, 369, 595–602. DOI: 10.1016/j.bbrc.2008.02.072.
  • Podesta, J. E.; Al-Jamal, K. T.; Herrero, M. A.; Tian, B.; Ali-Boucetta, H.; Hegde, V.; Bianco, A.; Prato, M.; Kostarelos, K. Antitumor Activity and Prolonged Survival by Carbon‐Nanotube‐Mediated Therapeutic siRNA Silencing in a Human Lung Xenograft Model. Small 2009, 5, 1176–1185. DOI: 10.1002/smll.200801572.
  • Al-Jamal, K. T.; Gherardini, L.; Bardi, G.; Nunes, A.; Guo, C.; Bussy, C.; Herrero, M. A.; Bianco, A.; Prato, M.; Kostarelos, K.; et al. Functional Motor Recovery from Brain Ischemic Insult by Carbon Nanotube-Mediated siRNA Silencing. Proc. Natl. Acad. Sci. USA 2011, 108, 10952–10957. DOI: 10.1073/pnas.1100930108.
  • Crinelli, R.; Carloni, E.; Menotta, M.; Giacomini, E.; Bianchi, M.; Ambrosi, G.; Giorgi, L.; Magnani, M. Oxidized Ultrashort Nanotubes as Carbon Scaffolds for the Construction of Cell-Penetrating NF-κB Decoy Molecules. ACS Nano 2010, 4, 2791–2803. DOI: 10.1021/nn100057c.
  • Pan, B.; Cui, D.; Xu, P.; Ozkan, C.; Feng, G.; Ozkan, M.; Huang, T.; Chu, B.; Li, Q.; He, R.; et al. Synthesis and Characterization of Polyamidoamine Dendrimer-Coated Multi-Walled Carbon Nanotubes and Their Application in Gene Delivery Systems. Nanotechnology 2009, 20, 125101. DOI: 10.1088/0957-4484/20/12/125101.
  • Jia, N.; Lian, Q.; Shen, H.; Wang, C.; Li, X.; Yang, Z. Intracellular Delivery of Quantum Dots Tagged Antisense Oligodeoxynucleotides by Functionalized Multiwalled Carbon Nanotubes. Nano Lett. 2007, 7, 2976–2980. DOI: 10.1021/nl071114c.
  • Bossche, J. V. d.; Al-Jamal, W. T.; Tian, B.; Nunes, A.; Fabbro, C.; Bianco, A.; Prato, M.; Kostarelos, K. Efficient Receptor-Independent Intracellular Translocation of Aptamers Mediated by Conjugation to Carbon Nanotubes. Chem. Commun. 2010, 46, 7379–7381. DOI: 10.1039/c0cc02092c.
  • Mohammadi, M.; Salmasi, Z.; Hashemi, M.; Mosaffa, F.; Abnous, K.; Ramezani, M. Single-Walled Carbon Nanotubes Functionalized with Aptamer and Piperazine–Polyethylenimine Derivative for Targeted siRNA Delivery into Breast Cancer Cells. Int. J. Pharm. 2015, 485, 50–60. DOI: 10.1016/j.ijpharm.2015.02.031.
  • Laurenti, E.; Varnum-Finney, B.; Wilson, A.; Ferrero, I.; Blanco-Bose, W. E.; Ehninger, A.; Knoepfler, P. S.; Cheng, P.-F.; MacDonald, H. R.; Eisenman, R. N.; et al. Hematopoietic Stem Cell Function and Survival Depend on c-Myc and N-Myc Activity. Cell Stem Cell 2008, 3, 611–624. DOI: 10.1016/j.stem.2008.09.005.
  • Braydich-Stolle, L. K.; Lucas, B.; Schrand, A.; Murdock, R. C.; Lee, T.; Schlager, J. J.; Hussain, S. M.; Hofmann, M.-C. Silver Nanoparticles Disrupt GDNF/Fyn Kinase Signaling in Spermatogonial Stem Cells. Toxicol. Sci. 2010, 116, 577–589. DOI: 10.1093/toxsci/kfq148.
  • Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold Nanoparticles Are Taken up by Human Cells but Do Not Cause Acute Cytotoxicity. Small 2005, 1, 325–327. DOI: 10.1002/smll.200400093.
  • MacNee, W.; Donaldson, K. Mechanism of Lung Injury Caused by PM10 and Ultrafine Particles with Special Reference to COPD. Eur. Respir. J. 2003, 21, 47s–51s. DOI: 10.1183/09031936.03.00403203.
  • Jia, H. Y.; Liu, Y.; Zhang, X. J.; Han, L.; Du, L. B.; Tian, Q.; Xu, Y. C. Potential Oxidative Stress of Gold Nanoparticles by induced-NO Releasing in Serum. J. Am. Chem. Soc. 2009, 131, 40–41. DOI: 10.1021/ja808033w.
  • Abdelhalim, M. A. K.; Jarrar, B. M. Renal Tissue Alterations Were Size-Dependent with Smaller Ones Induced More Effects and Related with Time Exposure of Gold Nanoparticles. Lipids Health Dis. 2011, 10, 163. DOI: 10.1186/1476-511X-10-163.
  • Abdelhalim, M. A. K.; Jarrar, B. M. Histological Alterations in the Liver of Rats Induced by Different Gold Nanoparticle Sizes, Doses and Exposure Duration. J. Nanobiotechnol. 2012, 10, 5. DOI: 10.1186/1477-3155-10-5.
  • Del Monte, U. Swelling of Hepatocytes Injured by Oxidative Stress Suggests Pathological Changes Related to Macromolecular Crowding. Med. Hypotheses 2005, 64, 818–825. DOI: 10.1016/j.mehy.2004.08.028.
  • Lloyd, C. M.; Hessel, E. M. Functions of T Cells in Asthma: More than Just TH2 Cells. Nat. Rev. Immunol. 2010, 10, 838–848. DOI: 10.1038/nri2870.
  • Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K.; et al. Carbon Nanotubes Introduced into the Abdominal Cavity of Mice Show Asbestos-like Pathogenicity in a Pilot Study. Nat. Nanotechnol. 2008, 3, 423–428. DOI: 10.1038/nnano.2008.111.
  • Nygaard, U. C.; Hansen, J. S.; Samuelsen, M.; Alberg, T.; Marioara, C. D.; Løvik, M. Single-Walled and Multi-Walled Carbon Nanotubes Promote Allergic Immune Responses in Mice. Toxicol. Sci. 2009, 109, 113–123. DOI: 10.1093/toxsci/kfp057.
  • Porter, D. W.; Hubbs, A. F.; Chen, B. T.; McKinney, W.; Mercer, R. R.; Wolfarth, M. G.; Battelli, L.; Wu, N.; Sriram, K.; Leonard, S.; et al. Acute Pulmonary Dose–Responses to Inhaled Multi-Walled Carbon Nanotubes. Nanotoxicology 2012, 7, 1179–1194. DOI: 10.3109/17435390.2012.719649.
  • Gonzalez, L.; Lison, D.; Kirsch-Volders, M. Genotoxicity of Engineered Nanomaterials: A Critical Review. Nanotoxicology 2008, 2, 252–273. DOI: 10.1080/17435390802464986.
  • Sayes, C. M.; Gobin, A. M.; Ausman, K. D.; Mendez, J.; West, J. L.; Colvin, V. L. Nano-C 60 Cytotoxicity is Due to Lipid Peroxidation. Biomaterials 2005, 26, 7587–7595. DOI: 10.1016/j.biomaterials.2005.05.027.
  • Kagan, V. E.; Tyurina, Y. Y.; Tyurin, V. A.; Konduru, N. V.; Potapovich, A. I.; Osipov, A. N.; Kisin, E. R.; Schwegler-Berry, D.; Mercer, R.; Castranova, V.; et al. Direct and Indirect Effects of Single Walled Carbon Nanotubes on RAW 264.7 Macrophages: Role of Iron. Toxicol. Lett. 2006, 165, 88–100. DOI: 10.1016/j.toxlet.2006.02.001.
  • Pulskamp, K.; Diabaté, S.; Krug, H. F. Carbon Nanotubes Show No Sign of Acute Toxicity but Induce Intracellular Reactive Oxygen Species in Dependence on Contaminants. Toxicol. Lett. 2007, 168, 58–74. DOI: 10.1016/j.toxlet.2006.11.001.
  • Hirano, S.; Kanno, S.; Furuyama, A. Multi-Walled Carbon Nanotubes Injure the Plasma Membrane of Macrophages. Toxicol. Appl. Pharmacol. 2008, 232, 244–251. DOI: 10.1016/j.taap.2008.06.016.
  • Muller, J.; Huaux, F.; Fonseca, A.; Nagy, J. B.; Moreau, N.; Delos, M.; Raymundo-Piñero, E.; Béguin, F.; Kirsch-Volders, M.; Fenoglio, I.; et al. Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Toxicological Aspects. Chem. Res. Toxicol. 2008, 21, 1698–1705. DOI: 10.1021/tx800101p.
  • Bussy, C.; Pinault, M.; Cambedouzou, J.; Landry, M. J.; Jegou, P.; Mayne-L'hermite, M.; Launois, P.; Boczkowski, J.; Lanone, S. Critical Role of Surface Chemical Modifications Induced by Length Shortening on Multi-Walled Carbon Nanotubes-Induced Toxicity. Part. Fibre Toxicol. 2012, 9, 46. DOI: 10.1186/1743-8977-9-46.
  • Stelzer, R.; Hutz, R. J. Gold Nanoparticles Enter Rat Ovarian Granulosa Cells and Subcellular Organelles, and Alter In-Vitro Estrogen Accumulation. J. Reprod. Dev. 2009, 55, 685–690. DOI: 10.1262/jrd.20241.
  • Fritz, S.; Kunz, L.; Dimitrijevic, N.; Grünert, R.; Heiss, C.; Mayerhofer, A. Muscarinic Receptors in Human Luteinized Granulosa Cells: Activation Blocks Gap Junctions and Induces the Transcription Factor Early Growth Response Factor-1. J. Clin. Endocrinol. Metab. 2002, 87, 1362–1367. DOI: 10.1210/jcem.87.3.8326.
  • Liu, X.; Qin, D.; Cui, Y.; Chen, L.; Li, H.; Chen, Z.; Gao, L.; Li, Y.; Liu, J. The Effect of Calcium Phosphate Nanoparticles on Hormone Production and Apoptosis in Human Granulosa Cells. Reprod. Biol. Endocrinol. 2010, 8, 32. DOI: 10.1186/1477-7827-8-32.
  • Pryor, J. L.; Hughes, C.; Foster, W.; Hales, B. F.; Robaire, B. Critical Windows of Exposure for Children’s Health: The Reproductive System in Animals and Humans. Environ. Health Perspect. 2000, 108, 491. DOI: 10.1289/ehp.00108s3491.
  • De Jong, W. H.; Hagens, W. I.; Krystek, P.; Burger, M. C.; Sips, A. J. A. M.; Geertsma, R. E. Particle Size-Dependent Organ Distribution of Gold Nanoparticles after Intravenous Administration. Biomaterials 2008, 29, 1912–1919. DOI: 10.1016/j.biomaterials.2007.12.037.
  • Yauk, C.; Polyzos, A.; Rowan-Carroll, A.; Somers, C. M.; Godschalk, R. W.; Van Schooten, F. J.; Berndt, M. L.; Pogribny, I. P.; Koturbash, I.; Williams, A.; et al. Germ-Line Mutations, DNA Damage, and Global Hypermethylation in Mice Exposed to Particulate Air Pollution in an Urban/Industrial Location. Proc. Natl. Acad. Sci. USA 2008, 105, 605–610. DOI: 10.1073/pnas.0705896105.
  • Kashiwada, S. Distribution of Nanoparticles in the See-Through Medaka (Oryzias Latipes). Environ. Health Perspect. 2006, 114, 1697–1702. DOI: 10.1289/ehp.9209.
  • Kim, J. S.; Yoon, T.-J.; Yu, K. N.; Kim, B. G.; Park, S. J.; Kim, H. W.; Lee, K. H.; Park, S. B.; Lee, J.-K.; Cho, M. H.; et al. Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice. Toxicol. Sci. 2006, 89, 338–347. DOI: 10.1093/toxsci/kfj027.
  • Komatsu, T.; Tabata, M.; Kubo-Irie, M.; Shimizu, T.; Suzuki, K.-I.; Nihei, Y.; Takeda, K. The Effects of Nanoparticles on Mouse Testis Leydig Cells in Vitro. Toxicol. In Vitro 2008, 22, 1825–1831. DOI: 10.1016/j.tiv.2008.08.009.
  • Yoshida, S.; Hiyoshi, K.; Ichinose, T.; Takano, H.; Oshio, S.; Sugawara, I.; Takeda, K.; Shibamoto, T. Effect of Nanoparticles on the Male Reproductive System of Mice. Int. J. Androl. 2009, 32, 337–342. DOI: 10.1111/j.1365-2605.2007.00865.x.
  • Meng, X. Regulation of Cell Fate Decision of Undifferentiated Spermatogonia by GDNF. Science 2000, 287, 1489–1493. DOI: 10.1126/science.287.5457.1489.
  • Naughton, CathyK.; Jain, Sanjay.; Strickland, AmyM.; Gupta, Akshay.; Milbrandt, Jeffrey. Glial Cell-Line Derived Neurotrophic Factor-Mediated RET Signaling Regulates Spermatogonial Stem Cell Fate. Biol. Reprod. 2006, 74, 314–321. DOI: 10.1095/biolreprod.105.047365.
  • Braydich-Stolle, L.; Kostereva, N.; Dym, M.; Hofmann, M.-C. Role of SRC Family Kinases and N-Myc in Spermatogonial Stem Cell Proliferation. Dev. Biol. 2007, 304, 34–45. DOI: 10.1016/j.ydbio.2006.12.013.
  • Oatley, J. M.; Avarbock, M. R.; Brinster, R. L. Glial Cell Line-Derived Neurotrophic Factor Regulation of Genes Essential for Self-Renewal of Mouse Spermatogonial Stem Cells is Dependent on Src Family Kinase Signaling. J. Biol. Chem. 2007, 282, 25842–25851. DOI: 10.1074/jbc.M703474200.
  • Lee, J.; Kanatsu-Shinohara, M.; Inoue, K.; Ogonuki, N.; Miki, H.; Toyokuni, S.; Kimura, T.; Nakano, T.; Ogura, A.; Shinohara, T.; et al. Akt Mediates Self-Renewal Division of Mouse Spermatogonial Stem Cells. Development 2007, 134, 1853–1859. DOI: 10.1242/dev.003004.
  • Schrand, A. M.; Rahman, M. F.; Hussain, S. M.; Schlager, J. J.; Smith, D. A.; Syed, A. F. Metal‐Based Nanoparticles and Their Toxicity Assessment. Wires Nanomed. Nanobiotechnol. 2010, 2, 544–568. DOI: 10.1002/wnan.103.
  • Johar, D.; Roth, J. C.; Bay, G. H.; Walker, J. N.; Kroczak, T. J.; Los, M. Inflammatory Response, Reactive Oxygen Species, Programmed (Necrotic-like and Apoptotic) Cell Death and Cancer. Rocz. Akad. Med. Bialymst. (1995) 2004, 49, 31–39.
  • Reddy, J. K.; Rao, M. S. Lipid Metabolism and Liver Inflammation. II. Fatty Liver Disease and Fatty Acid Oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G852–G858. DOI: 10.1152/ajpgi.00521.2005.
  • Wu, W.; Li, R.; Bian, X.; Zhu, Z.; Ding, D.; Li, X.; Jia, Z.; Jiang, X.; Hu, Y. Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparation and Antitumor Activity. ACS Nano 2009, 3, 2740–2750. DOI: 10.1021/nn9005686.
  • Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems. J. Pharm. Pharmacol. 2013, 65, 157–170. DOI: 10.1111/j.2042-7158.2012.01567.x.
  • Motlagh, N. S. H.; Parvin, P.; Ghasemi, F.; Atyabi, F. Fluorescence Properties of Several Chemotherapy Drugs: Doxorubicin, Paclitaxel and Bleomycin. Biomed. Opt. Express 2016, 7, 2400–2406. DOI: 10.1364/BOE.7.002400.
  • Hampel, S.; Kunze, D.; Haase, D.; Krämer, K.; Rauschenbach, M.; Ritschel, M.; Leonhardt, A.; Thomas, J.; Oswald, S.; Hoffmann, V.; et al. Carbon Nanotubes Filled with a Chemotherapeutic Agent: A Nanocarrier Mediates Inhibition of Tumor Cell Growth. Nanomedicine (Lond) 2008, 3, 175–182.
  • Goncalves, E. M.; Oliveira, F. J.; Silva, R. F.; Neto, M. A.; Fernandes, M. H.; Amaral, M.; Vallet-Regí, M.; Vila, M. Three‐Dimensional Printed PCL‐Hydroxyapatite Scaffolds Filled with CNT s for Bone Cell Growth Stimulation. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1210–1219.
  • Chen, H.; Ma, X.; Li, Z.; Shi, Q.; Zheng, W.; Liu, Y.; Wang, P. Functionalization of Single-Walled Carbon Nanotubes Enables Efficient Intracellular Delivery of siRNA Targeting MDM2 to Inhibit Breast Cancer Cells Growth. Biomed. Pharmacother. 2012, 66, 334–338. DOI: 10.1016/j.biopha.2011.12.005.
  • Kam, N. W. S.; Liu, Z.; Dai, H. Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for Efficient Intracellular Delivery of siRNA and Potent Gene Silencing. J. Am. Chem. Soc. 2005, 127, 12492–12493. DOI: 10.1021/ja053962k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.