334
Views
8
CrossRef citations to date
0
Altmetric
Article

Computational DFT calculations, photovoltaic properties and synthesis of (2R, 3S)-2, 3, 4-trihydroxybutoxy substituted phthalocyanines

, , &
Pages 816-827 | Received 09 Aug 2019, Accepted 09 Jan 2020, Published online: 13 Feb 2020

References

  • Sfyri, G.; Kumar, C. V.; Wang, Y.-L.; Xu, Z.-X.; Krontiras, C. A.; Lianos, P. Tetra Methyl Substituted Cu(II) Phthalocyanine as Alternative Holetransporting Material for Organometal Halide Perovskite Solar Cells. Appl. Surf. Sci. 2016, 360, 767–771. DOI: 10.1016/j.apsusc.2015.11.065.
  • Şener, S.; Tahir Bayraç, A.; Bilgenur Şener, B.; Tozlu, C.; Acar, N.; Salih, B.; Yüksel, M.; Bekaroğlu, Ö. Synthesis, Characterization, and DFT Study of Novel Metallo Phtalocyanines with Four Carboranyl Clusters as Photosensitisers for the Photodynamic Therapy of Breast Cancer Cells. Eur. J. Pharm. Sci. 2019, 129, 124–131. DOI: 10.1016/j.ejps.2018.12.017.
  • Safonova, E. A.; Meshkov, I. N.; Polovkova, M. A.; Volostnykh, M. V.; Tsivadze, A. Y.; Gorbunova, Y. G. Photophysical and Photochemical Properties of Non-Peripheral Butoxy-Substituted Phthalocyanines with Absorption in NIR Range. Mendeleev Commun. 2018, 28, 275–277. DOI: 10.1016/j.mencom.2018.05.015.
  • Güngördü Solğun, D.; Horoz, S.; Ağırtaş, M. S. Synthesis of Novel Tetra (4-tritylphenoxy) Substituted Metallophthalocyanines and Investigation of Their Aggregation, Photovoltaic, Solar Cell Properties. Inorg. Nano-Met. Chem. 2018, 48, 508–514. DOI: 10.1080/24701556.2019.1572624.
  • Sleven, J.; Görller-Walrand, C.; Binnemans, K. Synthesis, Spectral and Mesomorphic Properties of Octa-Alkoxy Substituted Phthalocyanine Ligands and Lanthanide Complexes. Mater. Sci. Eng. C 2001, 18, 229–238. DOI: 10.1016/S0928-4931(01)00365-4.
  • Gürol, İ.; Gümüş, G.; Ahsen, V. Synthesis and Characterization of Novel Fluoroether-Substituted Phthalocyanines. J. Fluorine Chem. 2012, 142, 60–66. DOI: 10.1016/j.jfluchem.2012.06.023.
  • Ağırtas, M. S.; Altındal, A.; Salih, B.; Saydam, S.; Bekaroğlu, Ö. Synthesis, Characterization, and Electrochemical and Electrical Properties of Novel Mono and Ball-Type Metallophthalocyanines with Four 9,9-Bis(4-Hydroxyphenyl)fluorene. Dalton Trans. 2011, 40, 3315–3324. DOI: 10.1039/c0dt01575j.
  • Kahouech, M. S.; Hriz, K.; Touaiti, S.; Bassem, J. New Anthracene-Based-Phtalocyanine Semi-Conducting Materials: Synthesis and Optoelectronic Properties. Mater. Res. Bull. 2016, 75, 144–154. DOI: 10.1016/j.materresbull.2015.11.010.
  • Özel, A.; Demirbaş, Ü.; Barut, B.; Kantekin, H. The Novel Water Soluble Peripherally and Non-Peripherally Tetra Piperidine Substituted Phthalocyanines: Synthesis, Characterization, DNA Cleavage Properties. J. Mol. Struct. 2019, 1186, 325–332. DOI: 10.1016/j.molstruc.2019.03.047.
  • Leznoff, C. C.;Lever, A.B.P.. Phthalocyanine Properties and Application, Vol.4; VCH Publisher: New York, 1996.
  • Ağırtas, M. S. Synthesis and Characterization of Novel Symmetrical Phthalocyanines Substituted with Four Benzo [d] [1, 3] Dioxol-5-ylmethoxy Groups. Inorg. Chim. Acta 2007, 360, 2499–2502.
  • Benipal, N.; Qi, J.; McSweeney, R. F.; Liang, C.; Li, W. Electrocatalytic Oxidation of Meso-Erythritol in Anion-Exchange Membrane Alkaline Fuel Cell on PdAg/CNT Catalyst. J. Power Sources 2018, 375, 345–350. DOI: 10.1016/j.jpowsour.2017.06.082.
  • Jesus, A. J. L.; Tomé, L. I. N.; MáRio TúLio, S.; Rosado, M. T. S.; Luı, M.; ´Sa, P.; Leitão, M. L. P.; Redinha, J. S. Conformational Study of Erythritol and Threitol in the Gas State by Density Functional Theory Calculations. Carbohydr. Res. 2005, 340, 283–291. DOI: 10.1016/j.carres.2004.11.018.
  • Gunasekara, S. N.; Stalin, J.; Marçal, M.; Delubac, R.; Karabanova, A.; Chiu, J. N. W.; Martin, V. Erythritol, Glycerol, Their Blends, and Olive Oil, as Sustainable Phase Change Materials. Energy Procedia 2017, 135, 249–262. DOI: 10.1016/j.egypro.2017.09.517.
  • Ağırtas, M. S.; Karatas, C.; Gümüs, S.; Okumus, V. Synthesis of Some Novel Phthalocyanines with Methyl 2-(oxy)-2,2diphenylacetate Substituents, Evaluation of Their Antioxidant-Antibacterial Activities and Electronic Properties. Z. Anorg. Allg. Chem. 2015, 641, 442–447.
  • Basiuk, V. A.; Chávez-Colorado, E. Adsorption of Free-Base Phthalocyanine on Stone-Wales Defect-Containing Carbon Nanotubes: A DFT Study. Diam. Relat. Mater. 2019, 97, 107443. DOI: 10.1016/j.diamond.2019.107443.
  • Basiuk, E. V.; Huerta, L.; Basiuk, V. A. Noncovalent Bonding of 3D Metal(Ii) Phthalocyanines with Single-Walled Carbon Nanotubes: A Combined DFT and XPS Study. Appl. Surf. Sci. 2019, 470, 622–630. DOI: 10.1016/j.apsusc.2018.11.159.
  • Karaoğlu, H. P.; Atsay, A.; Nar, I.; McKee, V.; Koçak, M. B.; Hamuryudan, E.; Gül, A. Near-Infrared Absorbing Π-Extended Hexadeca Substituted Phthalocyanines. J. Mol. Struct. 2019, 1197, 736–741. DOI: 10.1016/j.molstruc.2019.07.086.
  • Feng, Y.; Chen, Q.; Dong, L.; Zhang, Z.; Li, C.; Yang, S.; Cai, S.; Xu, Z.-X. Carbon-Chain Length Substituent Effects on Cu(II) Phthalocyanines as Dopant-Free Hole-Transport Materials for Perovskite Solar Cells. Sol. Energy 2019, 184, 649–656. DOI: 10.1016/j.solener.2019.04.019.
  • M. Murali, K.; S, B.; M.N, A. Photochemical and DFT/Td-DFT Study of Trifluoroethoxy Substituted Asymmetric Metal-Free and Copper(II) Phthalocyanines. J. Fluorine Chem. 2017, 202, 1–8.
  • Thimiopoulos, A.; Vogiatzi, A.; Simandiras, E. D.; Mousdis, G. A.; Psaroudakis, N. Synthesis, Characterization and DFT Analysis of new Phthalocyanine Complexes Containing Sulfur Rich Substituents. Inorg. Chim. Acta 2019, 488, 170–181. DOI: 10.1016/j.ica.2019.01.010.
  • Yılmaz, Y.; Mack, J.; Şener, M. K.; Sönmez, M.; Nyokong, T. Photophysical and Photochemical Properties and TD-DFT Calculations of Novel Zinc and Platinum Phthalocyanines. J. Photochem. Photobiol. 2014, 277, 102–110. DOI: 10.1016/j.jphotochem.2013.12.010.
  • Zhang, L.; Qi, D.; Zhao, L.; Bian, Y.; Li, W. Substituent Effects on the Structure–Property Relationship of Unsymmetrical Methyloxy and Methoxycarbonyl Phthalocyanines: DFT and TDDFT Theoretical Studies. J. Mol. Graph. Model. 2012, 35, 57–65. DOI: 10.1016/j.jmgm.2011.11.005.
  • Cabir, B.; Yildiko, U.; Ağirtaş, M. S. Synthesis, DFT Analysis, and Electronic Properties of New Phthalocyanines Bearing ETAEO Substituents on Peripheral Position. J. Coord. Chem. 2019, 72, 2997–3011. DOI: 10.1080/00958972.2019.1680832.
  • Kim, S. J.; Matsumoto, M.; Shigehara, K. Synthesis and Electrical Properties of Poly (μ-1,4-diisocyanobenzene) Octacyanophthalocyaninato Iron(II). Synth. Met. 1999, 107, 27–33. DOI: 10.1016/S0379-6779(99)00127-7.
  • Ağırtas, M. S.; Cabir, B.; Gümüş, S.; Özdemir, S.; Dündar, A. Synthesis and Antioxidant, Aggregation, and Electronic Properties of 6-Tert-Butyl-1,4-Benzodioxine Substituted Phthalocyanines. Turk. J. Chem. 2018, 42, 100–111. DOI: 10.3906/kim-1605-59.
  • Pekbelgin Karaoğlu, H. R.; Koca, A.; Koçak, M. B. The Synthesis and Electrochemistry of Novel, Symmetrical, Octasubstituted Phthalocyanines. Synth. Met. 2013, 182, 1–8. DOI: 10.1016/j.synthmet.2013.08.016.
  • Agirtas, M. S. Highly Soluble Phthalocyanines with Hexadeca Tert-Butyl Substituents. Dyes Pigments 2008, 79, 247–251.
  • Stillman, M. J. in: Leznoff, C.C.; Lever A.B.P. (Eds.), Phthalocyanines, vol. 3; VCH Publishers: New York; 1993; pp. 163.
  • Palewska, K.; Sworakowski, J.; Lipiński, J. Molecular Aggregation in Soluble Phthalocyanines – Chemical Interactions vs. π-Stacking. Opt. Mater. 2012, 34, 1717–1724. DOI: 10.1016/j.optmat.2012.02.009.
  • Karaca, H.; S.; Sezer, S.; Tanyeli, C.  Synthesis of L-Prolinol Substituted Novel Optically Active Phthalocyanines. Dyes Pigments 2011, 90, 100–105. DOI: 10.1016/j.dyepig.2010.12.003.
  • Frisch M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H., Caricato, M., Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M.; Ehara, M., Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y., Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; lyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford, CT, 2009.
  • Althagafi, I.; Elghalban, M. G.; Saad, F.; Al-Fahemi, J. H.; El-Metwaly, N. M.; Bondock, S.; Almazroai, L.; Saleh, K. A.; Al-Hazmi, G. A. Spectral Characterization, Ct-DNA Binding, DFT/B3LYP, Molecular Docking and Antitumor Studies for New Nano-Sized Vo(II)-Hydrazonoyl Complexes. J. Mol. Liq. 2017, 242, 662–677. DOI: 10.1016/j.molliq.2017.06.113.
  • Anand, S.; Sundararajan, R. S.; Ramachandraraja, C.; Ramalingam, S.; Durga, R. Molecular Vibrational Investigation [Ft-Ir, Ft-Raman, UV–Visible and NMR] on bis(thiourea) Nickel Chloride Using HF and DFT Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 203–215. DOI: 10.1016/j.saa.2014.11.032.
  • Abkari, A.; Chaabane, I.; Guidara, K. DFT (B3LYP/LANL2DZ and B3LYP/6311g+(D,P)) Comparative Vibrational Spectroscopic Analysis of Organic–Inorganic Compound Bis(4-acetylanilinium) Tetrachlorocuprate(II). Phys. E 2016, 81, 136–144. DOI: 10.1016/j.physe.2016.03.010.
  • Komjáti, B.; Urai, Á.; Hosztafi, S.; Kökösi, J.; Kováts, B.; Nagy, J.; Horváth, P. Systematic Study on the TD-DFT Calculated Electronic Circular Dichroism Spectra of Chiral Aromatic Nitro Compounds: A Comparison of B3LYP and CAM-B3LYP. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 155, 95–102. DOI: 10.1016/j.saa.2015.11.002.
  • Alcolea Palafox, M.; Bhat, D.; Goyal, Y.; Ahmad, S.; Hubert Joe, I.; Rastogi, V. K. FT-IR and FT-Raman Spectra, MEP and HOMO–LUMO of 2,5-Dichlorobenzonitrile: DFT Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 464–472. DOI: 10.1016/j.saa.2014.09.058.
  • Priya, M. K.; Revathi, B. K.; Renuka, V.; Sathya, S.; Asirvatham, P. S. Molecular Structure, Spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) Analysis, Homo-Lumo Energies, Mulliken, MEP and Thermal Properties of New Chalcone Derivative by DFT Calculation. Mater. Today 2019, 8, 37–46. DOI: 10.1016/j.matpr.2019.02.078.
  • Demircioğlu, Z.; Kaştaş, G.; Kaştaş, Ç. A.; Frank, R. Spectroscopic, XRD, Hirshfeld Surface and DFT Approach (chemical activity, ECT, NBO, FFA, NLO, MEP, NPA& MPa) of (E)-4-bromo-2-[(4-bromophenylimino)methyl]-6-ethoxyphenol. J. Mol. Struct. 2019, 1191, 129–137. DOI: 10.1016/j.molstruc.2019.03.060.
  • Gelfand, N.; Freidzon, A.; Vovna, V. Theoretical Insights into UV–Vis Absorption Spectra of Difluoroboron β-Diketonates with an Extended Π System: An Analysis based on DFT and TD-DFT Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 216, 161–172. DOI: 10.1016/j.saa.2019.02.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.