293
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Microbes induced biofabrication of nanoparticles: a review

, , , &
Pages 983-999 | Received 06 Jun 2019, Accepted 03 Feb 2020, Published online: 28 Feb 2020

References

  • Goodsell, D. S. Bionanotechnology: Lessons from Nature; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004.
  • Daniel, M. C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346.
  • Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622–627. DOI: 10.1126/science.1114397.
  • Wong, C. L.; Olivo, M. Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 2014, 9, 809–824. DOI: 10.1007/s11468-013-9662-3.
  • Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y. Superparamagnetic Colloids: Controlled Synthesis and Niche Applications. Adv. Mater. 2007, 19, 33–60. DOI: 10.1002/adma.200600674.
  • Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K. Influence of Silver and Titanium Nanoparticles on Arbuscular Mycorhiza Colonization and Accumulation of Radiocaesium in Helianthus anus. Span. J. Agric. Res. 2010, 8, 103–108.
  • Griffin, S.; Masood, M. I.; Nasim, M. J.; Sarfraz, M.; Ebokaiwe, A. P.; Schäfer, K.-H.; Keck, C. M.; Jacob, C. Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants 2017, 7, 3.
  • Mafune, F.; Kohno, J.; Takeda, Y.; Kondow, T. J. Dissociation and Aggregation of Gold Nanoparticles under Laser Irradiation. J. Phys. Chem. B 2001, 105, 9050–9056. DOI: 10.1021/jp0111620.
  • (a) Chen, T.; Chen, S.; Sheu, H.; Yeh, C. Reactivity of Laser-Prepared Copper Nanoparticles: Oxidation of Thiols to Disulfides. J. Phys. Chem. B. 2002, 106, 9717–9722. (b) Ershov, B. G.; Henglein, A. Optical Spectrum and Some Chemical Properties of Colloidal Thallium in Aqueous Solution. J. Phys. Chem. 1993, 97, 3434–3436. DOI: 10.1021/j100115a056.
  • (a) Henglein, A. Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions. Langmuir 1999, 15, 6738–6744. (b) Henglein, A. Formation and Absorption Spectrum of Copper Nanoparticles from the Radiolytic Reduction of Cu (CN)2-. J. Phys. Chem. B. 2000, 104, 1206–1211. DOI: 10.1021/jp992950g.
  • Grieser, F.; Ashok Kumar, M. Sonochemical Synthesis of Inorganic and Organic Colloids. In Colloids and Colloid Assemblies; Caruso, F., Ed.; Wiley-VCH: Weinheim, 2003, 120–149.
  • Wegner, K.; Walker, B.; Tsantilis, S.; Pratsinis, S. E. Design of Metal Nanoparticle Synthesis by Vapor Flow Condensation. Chem. Eng. Sci. 2002, 57, 1753–1762. DOI: 10.1016/S0009-2509(02)00064-7.
  • Mishra, S.; Kshatri, D. S.; Khare, A.; Tiwari, S.; Dwivedi, P. K. SrS:Ce3+ Thin Films for Electroluminescence Device Applications Deposited by Electron-Beam Evaporation Deposition Method. Mater. Lett. 2016, 183, 191–196.
  • Mishra, S.; Kshatri, D. S.; Khare, A.; Tiwari, S.; Dwivedi, P. K. Fabrication, Characterization and Electroluminescence Studies of SrS: Ce3+ ACTFEL Device. Mater. Lett. 2017, 198, 101–105. DOI: 10.1016/j.matlet.2017.04.013.
  • Swihart, M. T. Vapor-Phase Synthesis of Nanoparticles. Curr. Opin. Colloid Interface. Sci. 2003, 8, 127–133. DOI: 10.1016/S1359-0294Ž03.00007-4.
  • Rodriguez-Sanchez, M. L.; Rodriguez, M. J.; Blanco, M. C.; Rivas, J.; Lopez-Quintela, M. A. Kinetics and Mechanism of the Formation of Ag Nanoparticles by Electrochemical Techniques: A Plasmon and Cluster Time-Resolved Spectroscopic Study. J. Phys. Chem. B 2005, 109, 1183–1191. DOI: 10.1021/jp046056n.
  • Chen, W.; Cai, W.; Zhang, L.; Wang, G.; Zhang, L. Sonochemical Processes and Formation of Gold Nanoparticles within Pores of Mesoporous Silica. J. Colloid Interface Sci. 2001, 238, 291–295. DOI: 10.1006/jcis.2001.7525.
  • Eustis, S.; Hsu, H. Y.; El-Sayed, M. A. Gold Nanoparticle Formation from Photochemical Reduction of Au3+by Continuous Excitation in Colloidal Solutions: A Proposed Molecular Mechanism. J. Phys. Chem. B 2005, 109, 4811–4815. DOI: 10.1021/jp0441588.
  • Rodríguez-Sanchez, L.; Blanco, M. C.; Lopez-Quintela, M. A. Electrochemical Synthesis of Silver Nanoparticles. J. Phys. Chem. B 2002, 104, 9683–9688.
  • Starowiicz, M.; Stypula, B.; Banas, J. Electrochemical Synthesis of Silver Nanoparticles. Electrochem. Commun. 2006, 8, 227–230.
  • Frattini, A.; Pellegri, N.; Nicastro, D.; de Sanctis, O. Effect of Amine Groups in the Synthesis of Ag Nanoparticles Using Aminosilanes. Mater. Chem. Phys. 2005, 94, 148–152. DOI: 10.1016/j.matchemphys.2005.04.023.
  • Ai, J.; Biazar, E.; Jafarpour, M.; Montazeri, M.; Majdi, A.; Aminifard, S.; Zafari, M.; Akbari, H. R.; Rad, H. G. Nanotoxicology and Nanoparticle Safety in Biomedical Designs. Int. J. Nanomedicine. 2011, 6, 1117–1127. DOI: 10.2147/IJN.S16603.
  • Alexandridis, P. Gold Nanoparticle Synthesis, Morphology Control, and Stabilization by Functional Polymers. Chem. Eng. Technol. 2011, 14, 15–38. DOI: 10.1002/ceat.201000335.
  • Wang, L.; Chen, X.; Zhan, J.; Chai, Y.; Yang, C.; Xu, L.; Zhuang, W.; Jing, B. Synthesis of Gold Nano and Microplates in Hexagonal Liquid Crystals. J. Phys. Chem. B 2005, 109, 3189–3194. DOI: 10.1021/jp0449152.
  • Singaravelu, G.; Arockiamary, J. S.; Kumar, V. G.; Govindaraju, K. A Novel Extracellular Synthesis of Mondisperse Gold Nanoparticles Using Marine Alga Sargassum wightti Greville. Colloids Surf. B: Biointerfaces 2007, 57, 97–101.
  • Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10, 507–517. DOI: 10.1007/s11051-007-9275-x.
  • Gazit, E. Plenty of Room for Biology at the Bottom: An Introduction to Bionanotechnology; Imperial College Press: London, 2007.
  • http://www.wordiq.com/definition/Bionanotechnology.
  • Nolting, B. Biophysical Nanotechnology. In: Methods in Modern Biophysics, 2nd ed.; Springer-Verlag Berlin Heidelberg: New York, 2005,147-159. doi: 10.1007/978-3-642-03022-2
  • (a) https://resources.saylor.org/ www.resources/archived/site/wp-content/uploads/2011/06/Nanobiotechnology.pdf. (b) https://www.ntnu.edu/physics/bionano (accessed Dec 27, 2018).
  • Simkiss, K.; Wilbur, K. M. Biomineralization. Academic press: New York, 1989.
  • Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599.
  • Krishna, B. G.; Hegadi, R.; Rao, M. J.; Soni, S. Biological Synthesis of Germanium Dioxide Nanoparticles Using Bacteria. Proceedings of the IEEE Electrical and Computer Engineering (WIECON-ECE), BUET, Dhaka, Bangladesh, Dec. 2015.
  • Krishna, B. G.; Rao, M. J. Biosynthesis and Study of Microwave Radiation Absorption by Ilmenite Nanoparticles. Int. J. Eng.Trends Appl. 2015, 2, 41–47.
  • Krishna, B. G.; Rao, M. J. Synthesis of Calcium Silicate(CaSiO3) Using Calcium Fluoride, Quartz and Microbes. Int. J. Eng. Res. Appl. 2015, 5, 70–74.
  • Krishna, B. G.; Rao, M. J. Biosynthesis and Measurement of Thermal Conductivity of ZnO Material. Int. J. Eng. Trends Technol. 2015, 26, 272–275. ISSN: 2231-5381.
  • Krishna, B. G.; Nalinikant, B.; Rao, M. J.; Golhani, D. K.; Golhani, M. S. 2016 Synthesis of Mercury (Hg) Nano Range Particles. Proceedings of the IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), AISSMS, Pune, India.
  • Rao, M. J.; Krishna, B. G. Synthesis of Copper Silicate (CuSiO3.H2O) Using Copper Oxide, Quartz and Microbes. Int. J. Eng. Adv. Technol. 2015, 5, 41–44.
  • (a) Krishna, B. G.; Nalinikant, B.; Rao, M. J.; Tiwari, S.; Tanavi, H. Fabrication of FeTiO3/SiO2 matrix based sensors for glucose detection in blood. Proceedings of the IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), AISSMS, Pune, India, 2016, 21–24. (b) Krishna, B. G.; Rao, M. J.; Nalinikant, B.; Golhani, D.K.; Tiwari, S. Highly sensitive TiO2 thin film matrix biosensor for glucose detection in blood. Proceedings of the IEEE Region 10 International Conference (TENCON), Singapore, 2016, 2951–2955.
  • Krishna, B. G.; Rao, M. J.; Nalinikant, B.; Golhani, D. K.; Zaidi, S. A. H. 2016 GeO2/SiO2 Matrix Biosensor for Detection of Probiotic Bacteria L. plantarum. Proceedings of the IEEE Region 10 International Conference (TENCON), Singapore, 2956–2960.
  • Krishna, B. G.; Prasad, P.; Sahu, V.; Sahu, J. P.; Agarwal, A. Beta Backscattering and Gamma Radiation Absorption Characteristics of Carbon Nanoparticles Contained Concrete Composite. Nano Hybrids Compos. 2017, 17, 31–36.
  • Bailey, J. E.; Ollis, D. F. Biochemical Engineering Fundamentals; McGraw-Hill: New York, 1986.
  • Battley, E. H. Energetics of Microbial Growth; Wiley: NewYork, 1987.
  • Pemberton, M. J.; Schmidt, R. Catabolic Plasmids, Encyclopedia of Life Sciences; John Wiley & Sons Ltd.: Hoboken, NJ, 2001.
  • Krishna, B. G. 2009 Effects of Transition in Well Known Mechanical Systems. Proceedings of National Conference on High Tech Materials, Raipur, India.
  • Blackmore, R. P. Magnetotactic Bacteria. Annu. Rev. Microbiol. 1982, 36, 217–238.
  • Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford Univ. Press: Oxford, 2001.
  • Pum, D.; Sleytr, U. B. The Application of Bacterial S-Layers in Molecular Nanotechnology. Trends Biotechnol. 1999, 17, 8–12.
  • Bruins, R. M.; Kapil, S.; Oehme, S. W. Microbial Resistance to Metals in. the environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir 2003, 19, 3550–3553.
  • Mithila, A.; Swanand, J.; Ameeta, R. K.; Smita, Z.; Sulabha, K. Biosynthesis of Gold Nanoparticles by the Tropical Marine Yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 2009, 63, 1231–1234.
  • Silver, S. Bacterial Resistances to Toxic Metal Ions - A Review. Gene 1996, 179, 9–19. DOI: 10.1016/s0378-1119(96)00323-x.
  • Iravani, S. Bacteria in Nanoparticle Synthesis: current Status and Future Prospects. Int. Sch. Res. Not. 2014, 2014, 359316. DOI: 10.1155/2014/359316.
  • Sunkar, S.; Nachiyar, C. V. Biogenesis of Antibacterial Silver Nanoparticles Using the Endophytic Bacterium Bacillus cereus Isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2012, 2, 953–959. DOI: 10.1016/S2221-1691(13)60006-4.
  • Tollamadugu, N. V. K. V.; Prasad, T.; Kambala, V. S. R.; Naidu, R. A Critical Review on Biogenic Silver Nanoparticles and Their Antimicrobial Activity. Curr. Nanosci. 2011, 7, 531–544. DOI: 10.2174/157341311796196736.
  • Jo, J. H.; Singh, P.; Kim, Y. J.; Wang, C.; Mathiyalagan, R.; Jin, C.-G.; Yang, D. C. Pseudomonas deceptionensis DC5-Mediated Synthesis of Extracellular Silver Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1576–1581.
  • Singh, P.; Kim, Y. J.; Wang, C.; Mathiyalagan, R.; Yang, D. C. Weissella oryzae DC6-Facilitated Green Synthesis of Silver Nanoparticles and Their Antimicrobial Potential. Artif. Cells Nanomed. Biotechnol. 2016, 44(6), 1569–1575.
  • Wang, C.; Kim, Y. J.; Singh, P.; Mathiyalagan, R.; Jin, Y.; Yang, D. C. Green Synthesis of Silver Nanoparticles by Bacillus methylotrophicus, and Their Antimicrobial Activity. Artif. Cells Nanomed. Biotechnol. 2015, 44(4) 1–6. DOI: 10.3109/21691401.2015.1011805..
  • Singh, P.; Kim, Y. J.; Singh, H.; Wang, C.; Hwang, K. H.; Farh, M.; Yang, D. C. Biosynthesis, Characterization, and Antimicrobial Applications of Silver Nanoparticles. Int. J. Nanomed. 2015, 10, 2567–2577. DOI: 10.2147/IJN.S72313.
  • Singh, P.; Kim, Y. J.; Singh, H.; Mathiyalagan, R.; Wang, C.; Yang, D. C. Biosynthesis of Anisotropic Silver Nano-Particles by Bhargavaea indica and Their Synergistic Effect with Antibiotics against Pathogenic Microorganisms. J. Nanomater. 2015, 2015, 234741. DOI: 10.1155/2015/234741.
  • Singh, P.; Kim, Y. J.; Wang, C.; Mathiyalagan, R.; Yang, D. C. Microbial Synthesis of Flower-Shaped Gold Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2015, 44, 1469–1474. DOI: 10.3109/21691401.2015.1041640.
  • Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Silver-Based Crystalline Nanoparticles, Microbially Fabricated. Proc. Natl. Acad. Sci. USA 1999, 96, 13611–13614.
  • Slawson, R. M.; Van Dyke, M. I.; Lee, H.; Trevors, J. T. Germanium and Silver Resistance, Accumulation, and Toxicity in Microorganisms. Plasmid 1992, 27, 72–79. DOI: 10.1016/0147-619X(92)90008-X.
  • Guoxiang, L.; Zhou, S. Y.-D.; Ren, H.-Y.; Xue, X.-M.; Xu, Y.-Y.; Bao, P. Extracellular Biomineralization of Gold by Delftia tsuruhatensis gx-3 Isolated from Heavy Metal Contaminated Paddy Soil. ACS Earth Space Chem. 2018, 2, 1294–1300. DOI: 10.1021/acsearthspacechem.8b00127.
  • Southam, G.; Beveridge, T. J. The in Vitro Formation of Placer Gold by Bacteria. Geochim. Cosmochim. Acta 1994, 58, 4527–4530.
  • Nair, B.; Pradeep, T. Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus strains. Crys. Grow. Des. 2002, 4, 295–298.
  • Prasad, K.; Jha, A. K.; Kulkarni, A. R. Lactobacillus Assisted Synthesis of Titanium Nanoparticles. Nanoscale Res. Lett. 2007, 2, 248–250.
  • Bazylinski, D. A.; Heywood, B. R.; Mann, S.; Frankel, R. B. Fe3O4 and Fe3S4 in a Bacterium. Nature 1993, 366, 218. DOI: 10.1038/366218a0.
  • Farina, M.; Esquivel, D. M. S.; Lins de Barros, H. G. P. Magnetic Iron-Sulphur Crystals from a Magnetotactic Microorganism. Nature 1990, 343, 256–258. DOI: 10.1038/343256a0.
  • Mann, S.; Frankel, R. B.; Blakemore, R. P. Structure, Morphology and Crystal Growth of Bacterial Magnetite. Nature 1984, 310, 405–407.
  • Bazylinski, D. A.; Frankel, R. B.; Jannasch, H. W. Anaerobic Magnetite Production by a Marine, Magnetotactic Bacterium. Nature 1988, 334, 518–519. DOI: 10.1038/334518a0.
  • Watson, J. H. P.; Croudace, I. W.; Warwick, P. E.; James, P. A. B.; Charnock, J. M.; Ellwood, D. C. Adsorption of Radioactive Metals by Strongly Magnetic Iron Sulfide Nanoparticles Produced by Sulfate-Reducing Bacteria. Sep. Sci.Technol. 2001, 36, 2571–2607. DOI: 10.1081/SS-100107214.
  • Philipse, A. P.; Maas, D. Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability. Langmuir 2002, 18, 9977–9984. DOI: 10.1021/la0205811.
  • Lee, H.; Purdon, A. M.; Chu, V.; Westervelt, R. M. Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria Using Microelectromagnets Arrays. Nano Lett. 2004, 4, 995–998. DOI: 10.1021/nl049562x.
  • Lang, C.; Schuler, D. Biogenic Nanoparticles: Production, Characterization, and Application of Bacterial Magnetosome. J. Phys. Condens. Matter 2006, 18, S2815–S2828.
  • Lovley, D. R.; Stolz, J. F.; Nord, G. L.; Phillips, E. J. P. Anaerobic Production of Magnetite by a Dissimilatory Iron-Reducing Microorganism. Nature 1987, 330, 252–254. DOI: 10.1038/330252a0.
  • Bazylinski, D. A.; Frankel, R. B.; Heywood, B. R.; Mann, S.; King, J. W.; Donaghay, P. L.; Hanson, A. K. Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium. Appl. Environ. Microbiol. 1995, 61, 3232–3239. DOI: 10.1128/AEM.61.9.3232-3239.1995.
  • Watson, J. H. P.; Ellwood, D. C.; Soper, A. K.; Charnock, J. Nanosized Strongly-Magnetic Bacterially-Produced Iron Sulfide Materials. J. Magn. Magn. Mater. 1999, 203, 69–72. DOI: 10.1016/S0304-8853(99)00191-2.
  • Lin, Z. Y.; Fu, J. K.; Wu, J. M.; Liu, Y. Y.; Cheng, H. Preliminary Study on the Mechanism of Non-Enzymatic Bioreduction of Precious Metal Ions. Acta Phys. Chim. Sin. 2001, 17, 477–480.
  • Hulkoti, N. I.; Taranath, T. C. Biosynthesis of Nanoparticles Using microbes - A Review. Colloids Surf B Biointerfaces 2014, 121, 474–483. DOI: 10.1016/j.colsurfb.2014.05.027.
  • Sinha, A.; Khare, S. K. Mercury Bioaccumulation and Simultaneous Nanoparticle Synthesis by Enterobacter sp. cells. Biores. Technol. 2011, 102, 4281–4284. DOI: 10.1016/j.biortech.2010.12.040.
  • Kashefi, K.; Lovley, D. R. Reduction of Fe(III), Mn(IV), and Toxic Metals at 100 degrees C by Pyrobaculum islandicum. Appl. Environ. Microbiol. 2000, 66, 1050–1056. DOI: 10.1128/aem.66.3.1050-1056.2000.
  • Lloyd, J. R.; Yong, P.; Macaskie, L. E. Enzymatic Recovery of Elemental Palladium by Using Sulfate-Reducing Bacteria. Appl. Environ. Microbiol. 1998, 64, 4607–4609.
  • Vargas, I. D.; Macaskie, L. E.; Guibal, L. Biosorption of Palladium and Platinum by Sulfate‐ Reducing Bacteria. J. Chem. Technol. Biotechnol. 2003, 79, 49–56. DOI: 10.1002/jctb.928.
  • DeWindt, W.; Aelterman, P.; Verstraete, W. Bioreductive Deposition of Palladium (0) Nanoparticles on Shewanella oneidensis with Catalytic Activity towards Reductive Dechlorination of Polychlorinated Biphenyls. Environ. Microbiol. 2005, 7, 314–325. DOI: 10.1111/j.1462-2920.2005.00696.x.
  • Liu, Y. Y.; Fu, J. K.; Chen, P.; Yu, X.; Yang, P. Studies on Biosorption of Au3+ by Bacillus megaterium. Wei Sheng Wu Xue Bao 2000, 40, 425–429.
  • Sneha, K.; Sathish Kumar, M.; Mao, J.; Kwak, I. S.; Yun, Y. S. Corynebacterium glutamicum-Mediated Crystallization of Silver Ions through Sorption and Reduction Processes. Chem. Eng. J. 2010, 162, 989–996. DOI: 10.1016/j.cej.2010.07.006.
  • Yong, P.; Rowson, N. A.; Farr, J. P. G.; Harris, I. R.; Macaskie, L. E. Bioreduction and Biocrystallization of Palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol. Bioeng. 2002, 80, 369–379. DOI: 10.1002/bit.10369.
  • Konishi, Y.; Nomura, T.; Tsukiyama, T.; Saitoh, N. Microbial Preparation of Gold Nanoparticles by Anaerobic Bacterium. Trans. Mater. Res. Soc. Jpn. 2004, 29, 2341–2343.
  • Konishi, Y.; Tsukiyama, T.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S. Intracellular Recovery of Gold by Microbial Reduction of AuCl4− Ions Using the Anaerobic Bacterium Shewanella algae. Hydrometallurgy 2006, 81, 24–29.
  • Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S. Microbial Deposition of Gold Nanoparticles by the Metal-Reducing Bacterium Shewanella algae. Electrochim. Acta 2007, 53, 186–192.
  • Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. Bioreductive Deposition of Platinum Nanoparticles on the Bacterium Shewanella algae. J. Biotechnol. 2007, 128, 648–653. DOI: 10.1016/j.jbiotec.2006.11.014.
  • https://www.collinsdictionary.com/dictionary/English.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6, 257–262.
  • Rauwel, P.; Kuunal, S.; Ferdov, S.; Rauwel, E. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM Advances. Mater. Sci. Eng. 2015, 682749, 1–9. DOI: 10.1155/2015/682749.
  • Kannan, R. R.; Arumugam, R.; Ramya, D.; Manivannan, K.; Anantharaman, P. Green Synthesis of Silver Nanoparticles Using Marine Macroalgae Chaetom. linum. Appl. Nanosci. 2013, 3, 229–233. DOI: 10.1007/s13204-012-0125-5.
  • Yousefzadi, M.; Rahimi, Z.; Ghafori, V. The Green Synthesis, Characterization and Antimicrobial Activities of Silver Nanoparticles Synthesized from Green Alga Enteromorpha flexuosa (Wulfen). J. Agardh. Mater. Lett 2014, 137, 1–4. DOI: 10.1016/j.matlet.2014.08.110.
  • Rajesh Kumar, S.; Kannan, C.; Annadurai, G. Green Synthesis of Silver Nanoparticles Using Marine Brown Algae Turbinaria conoides and Its Antibacterial Activity. Int. J. Pharma Biosci. 2012, 3, 502–510.
  • Rajathi, A. A. F.; Parthiban, C.; Kumar, G. V.; Anantharaman, P. Biosynthesis of Antibacterial Gold Nanoparticles Using Brown Alga, Stoechospermum marginatum (Kutzing). Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2012, 99, 166–173.
  • Sudha, S. S.; Rajamanikam, K.; Rengaramanujam, J. Microalgae Mediated Synthesis of Silver Nanoparticles and Their Antibacterial Activity against Pathogenic Bacteria. Indian J. Exp. Biol. 2013, 52, 393–399.
  • Senapati, S.; Syed, A.; Moeez, S.; Kumar, A.; Absar, A. Intracellular Synthesis of Gold Nanoparticles Using Alga Tetraselmis kochinensis. Mater. Lett. 2012, 79, 116–118. DOI: 10.1016/j.matlet.2012.04.009.
  • Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K. Facile Green Synthesis of Variable Metallic Gold Nanoparticle Using Padina gymnospora, a Brown Marine Macroalga. Appl. Nanosci. 2013, 3, 145–151.
  • Lodeiro, P.; Sillanpaa, M. Gold Recovery from Artificial Seawater Using Synthetic Materials and Seaweed Biomass to Induce Gold Nanoparticles Formation in Batch and Column Experiments. Marine Chem. 2013, 152, 11–19. DOI: 10.1016/j.marchem.2013.03.003.
  • Mata, Y. N.; Torres, E.; Blazquez, M. L.; Ballester, A.; Gonzalez, F.; Munoz, J. A. Gold (111) Biosorption and Bioreduction with the Brown Alga Fucus vesiculosus. J. Hazard. Mater. 2009, 166, 612–618.
  • Luangpipat, T.; Beattie, I. R.; Chisti, Y.; Haverkamp, R. G. Gold Nanoparticles Produced in a Microalga. J. Nanopart. Res. 2011, 13, 6439–6445.
  • Xie, J.; Lee, J. Y.; Wang, D. I. C.; Ting, Y. P. Silver Nanoplates: From Biological to Biomimetic Synthesis. ACS Nano 2007, 1, 429–439.
  • Naveena, B. E.; Prakash, S. Biological Synthesis of Gold Nanoparticles Using Marine Algae Gracilaria corticata and Its Application as a Potent Antimicrobial and Antioxidant Agent. Asian J. Phar. Clin. Res. 2013, 6, 179–182.
  • Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two New Flavanoids and Other Constitutes in Licorice Root; Their Relative Stringency and Radical Scavenging Effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. DOI: 10.1248/cpb.36.2090.
  • Govindaraju, K.; Kiruthiga, V.; Kumar, V. G.; Singaravelu, G. Extracellular Synthesis of Silver Nanoparticles by a Marine Alga, Sargassum wightii Grevilli and Their Antibacterial Effects. J. Nanosci. Nanotechnol. 2009, 9, 5497–5450. DOI: 10.1166/jnn.2009.1199.
  • Parial, D.; Patra, H. K.; Dasgupta, A. K. R.; Pal, R. Screening of Different Algae for Green Synthesis of Gold Nanoparticles. Eur. J. Phycol. 2012, 47, 22–29. DOI: 10.1080/09670262.2011.653406.
  • Sharma, G.; Nakuleshwar, D. J.; Kumar, M.; Mohammad, I. A. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Spirulina platensis. J. Nanotechnol. 2015, 4, 1–6. DOI: 10.1155/2015/132675.
  • Alghuthaymi, M. A.; Almoammar, H.; Rai, M.; Said-Galiev, E.; Abd-Elsalam, K. A. Myconanoparticles: Synthesis and Their Role in Phytopathogens Management. Biotechnol. Biotechnol. Equip. 2015, 29, 221–236. DOI: 10.1080/13102818.2015.1008194.
  • Anil Kumar, S.; Abyaneh, M. K.; Gosavi, S. W.; Kulkarni, S. K.; Pasricha, R.; Ahmad, A.; Khan, M. I. Nitrate Reductase-Mediated Synthesis of Silver Nanoparticles from AgNO3. Biotechnol. Lett. 2007, 29, 439–445. DOI: 10.1007/s10529-006-9256-7.
  • Vigneshwaran, N.; Ashtaputre, N. M.; Varadarajan, P. V.; Nachane, R. P.; Paralikar, K. M.; Balasubramanya, R. H. Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus flavus. Mater. Lett. 2007, 61, 1413–1418. DOI: 10.1016/j.matlet.2006.07.042.
  • Shankar, S. S.; Ahmad, A.; Pasricha, R.; Sastry, M. Bioreduction of Chloroaurate Ions by Geranium Leaves and Its Endophytic Fungus Yields Gold Nanoparticles of Different Shapes. J. Mater. Chem. 2003, 13, 1822–1826. DOI: 10.1039/b303808b.
  • Kathiresan, K.; Manivannan, S.; Nabeel, M. A.; Dhivya, B. Studies on Silver Nanoparticles Synthesized by a Marine Fungus Penicillium fellutanum Isolated from Coastal Mangrove Sediment. Colloids Surf. B 2009, 71, 133–137.
  • Gade, A. K.; Bonde, P.; Ingle, A. P.; Marcato, P. D.; Duran, N.; Rai, M. K. Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles. J. Biobased Mater. Bioenergy 2008, 2, 243–247. DOI: 10.1166/jbmb.2008.401.
  • Kumar, S. A.; Ansary, A. A.; Ahmad, A.; Khan, M. I. Extra-Cellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium oxysporum. J. Biomed. Nanotechnol. 2007, 3, 190–194. DOI: 10.1166/jbn.2007.027.
  • Bharde, A.; Rautaray, D.; Bansal, V.; Ahmad, A.; Sarkar, I.; Yusuf, S. M.; Sanyal, M.; Sastry, M. Extracellular Biosynthesis of Magnetite Using Fungi. Small 2006, 2, 135–141. DOI: 10.1002/smll.200500180.
  • Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of Zirconia Nanoparticles Using the Fungus Fusarium oxysporum. J. Mater. Chem. 2004, 14, 3303–3305. DOI: 10.1039/b407904c.
  • Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc. 2006, 128, 11958–11963.
  • Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. Chembiochem 2002, 3, 461–463. DOI: 10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X.
  • Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Fusarium oxysporum. Colloids Surf. B 2003, 28, 313–318. DOI: 10.1016/S0927-7765(02)00174-1.
  • Senapati, S.; Ahmad, A.; Khan, M. I.; Sastry, M.; Kumar, R. Extracellular Biosynthesis of Bimetallic Au–Ag Alloy Nanoparticles. Small 2005, 1, 517–520. DOI: 10.1002/smll.200400053.
  • Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus, Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124, 12108–12109.
  • Bhainsa, K. C.; D'Souza, S. F. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces 2006, 47, 160–164. DOI: 10.1016/j.colsurfb.2005.11.026.
  • Velhal, S. G.; Kulkarni, S. D.; Latpat, R. V. Fungal Mediated Silver Nanoparticle Synthesis Using Robust Experimental Design and Its Application in Cotton Fabric. Int. Nano Lett. 2016, 6, 257–264.
  • Rai, M.; Yadav, P.; Bridge, P.; Gade, A. MycoNanotechnology (NT), a New and Emerging Science. In Applied Mycology; Bridge, R., Ed.; London, UK: CAB International; 2009, pp. 258–267.
  • Castro-Longoria, E.; Vilchis-Nestor, A. R.; Avalos-Borja, M. Biosynthesis of Silver, Gold and Bimetallic Nanoparticles Using the Filamentous Fungus Neurospora crassa. Colloids Surf. B Biointerfaces 2011, 83, 42–48. DOI: 10.1016/j.colsurfb.2010.10.035.
  • Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Ramani, R.; Parischa, R.; Ajay Kumar, P. V.; Alam, M.; et al. Bioreduction of AuCl4-Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles Formed. Angew. Chem. Int. Ed. 2001, 40, 3585–3588. DOI: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K.
  • Harish Kumar, K.; Savalgi, V. P. Microbial Synthesis of Zinc Nanoparticles Using Fungus Isolated from Rhizosphere Soil. Int. J. Curr. Microbiol. Appl. Sci 2017, 6, 2359–2364.
  • Bansal, V.; Rautaray, D.; Bharde, A.; Ahire, K.; Sanyal, A.; Ahmad, A.; Sastry, M. Fungus-Mediated Biosynthesis of Silica and Titania Particles. J. Mater. Chem. 2005, 15, 2583–2589. DOI: 10.1039/b503008k.
  • Uddin, I.; Adyanthaya, S.; Syed, A.; Selvaraj, K.; Ahmad, A.; Poddar, P. Structure and Microbial Synthesis of Sub-10nm Bi2O3 Nanocrystals. J. Nanosci. Nanotechnol. 2008, 8, 3909–3913.
  • Kumar, A.; Mandal, S.; Selvakannan, P. R.; Pasricha, R.; Mandale, A. B.; Sastry, M. Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles. Langmuir 2003, 19, 6277–6282. DOI: 10.1021/la034209c.
  • Kumar, C. V.; McLendon, G. L. Nanoencapsulation of Cytochrome c and Horseradish Peroxidase at the Galleries of α-Zirconium Phosphate. Chem. Mater. 1997, 9, 863–870. DOI: 10.1021/cm960634y.
  • Macdonald, I. D. G.; Smith, W. E. Orientation of Cytochrome Adsorbed on a Citrate-Reduced Silver Colloid Surface. Langmuir 1996, 12, 706–713. DOI: 10.20546/ijcmas.2017.612.272.
  • Hillel, D. Soil in the Environment; Academic Press: New York, 2008.
  • Abd-Elnaby, H. M.; Abo-Elala, G. M.; Abdel-Raouf, U. M.; Hamed, M. M. Antibacterial and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles from Marine Streptomyces rochei MHM13. Egypt. J. Aqua. Res. 2016, 42, 301–312. DOI: 10.1016/j.ejar.2016.05.004.
  • Abdeen, S.; Geo, S.; Sukanya, S.; Praseetha, P. K.; Dhanya, R. P. Biosynthesis of Silver Nanoparticles from Actinomycetes for Therapeutic Applications. Int. J. Nano Dimens. 2014, 5, 155–162. ISSN: 2008–8868.
  • Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003, 85, 162–170.
  • Chauhan, R.; Kumar, A.; Abraham, J. A Biological Approach to the Synthesis of Silver Nanoparticles with Strptomyces sp. JAR1 and Its Antimicrobial Activity. Sci. Pharm. 2013, 81, 607–621.
  • Sukanya, M. K.; Saju, K. A.; Praseetha, P. K.; Sakthivel, G. Therapeutic Potential of Biologically Reduced Silver Nanoparticles from Actinomycete Cultures. J. Nanosci. 2013, 2013, 1–8.
  • Prakasham, R. S.; Buddana, S. K.; Yannam, S. K.; Guntuku, G. S. Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus. J. Microbiol. Biotechnol. 2012, 22, 614–621.
  • Balagurunathan, R.; Radhakrishnan, M.; Rajendran, R. B.; Velmurugan, D. Biosynthesis of Gold Nanoparticles by Actinomycete Streptomyces viridogens Strain HM10. Indian J. Biochem. Biophys. 2011, 48, 331–335.
  • Karthik, L.; Kumar, G.; Vishnu-Kirthi, A.; Rahuman, A. A.; Rao, V. B. Streptomyces sp. LK3 Mediated Synthesis of Silver Nanoparticles and Its Biomedical Application. Bioprocess Biosyst. Eng. 2014, 37, 261–267. DOI: 10.1007/s00449-013-0994-3.
  • Kumar, A.; Kaur, K.; Sharma, S. Synthesis, Characterization and Antibacterial Potential of Silver Nanoparticles by Morus Nigra Leaf Extract. Indian J. Pharm. Biol. Res. 2013, 1, 16–24.
  • Lee, S. W.; Mao, C.; Flynn, C.; Belcher, A. M. Ordering of Quantum Dots Using Genetically Engineered Viruses. Science 2002, 296, 892–895. DOI: 10.1126/science.1068054.
  • Sun, W.; Zhong, J.; Qin, P.; Jiao, K. Electrochemical Biosensor for the Detection of Cauliflower Mosaic Virus 35 S Gene Sequences Using Lead Sulfide Nanoparticles as Oligonucleotide Labels. Anal. Biochem. 2008, 377, 115–119. DOI: 10.1016/j.ab.2008.03.027.
  • Mao, C.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science 2004, 303, 213–217.
  • Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O. Green Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Nat. 2014, 6, 35–44.
  • Royston, E.; Ghosh, A.; Kofinas, P.; Harris, M. T.; Culver, J. N. Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery Electrodes. Langmuir 2008, 24, 906–912. DOI: 10.1021/la7016424.
  • Aljabali, A. A. A.; Barclay, J. E.; Lomonossoff, G. P.; Evans, D. J. Virus Templated Metallic Nanoparticles. Nanoscale 2010, 2, 2596–2600.
  • Gorzny, M. L.; Walton, A. S.; Evans, S. D. Synthesis of High-Surface-Area Platinum Nanotubes Using a Viral Template. Adv. Funct. Mater. 2010, 20, 1295–1300. DOI: 10.1002/adfm.200902196.
  • Kobayashi, M.; Tomita, S.; Sawada, K.; Shiba, K.; Yanagi, H.; Yamashita, I.; Uraoka, Y. Chiralmeta-Molecules Consisting of Gold Nanoparticles and Genetically Engineered Tobacco Mosaic Virus. Opt. Exp. 2012, 20, 24856–24863.
  • Rybicki, E. P. Plant-Made Vaccines for Humans and Animals. Plant Biotechnol. J. 2010, 8, 620–637. DOI: 10.1111/j.1467-7652.2010.00507.x.
  • Zeng, Q.; Wen, H.; Wen, Q.; Chen, X.; Wang, Y.; Xuan, W.; Liang, J.; Wan, S. Cucumber Mosaic Virus as Drug Delivery Vehicle for Doxorubicin. Biomaterials 2013, 34, 4632–4642. DOI: 10.1016/j.biomaterials.2013.03.017.
  • Steinmetz, N. F.; Lin, T.; Lomonossoff, G. P.; Johnson, J. E. Structure-Based Engineering of an Icosahedral Virus for Nanomedicine and Nanotechnology. Curr. Top. Microbiol. Immunol. 2009, 327, 23–58. DOI: 10.1007/978-3-540-69379-6_2.
  • Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Inorganic–Organic Nanotube Composites from Emplate Mineralization of Tobacco Mosaic Virus. Adv. Mater. 1999, 11, 253–256.
  • Fowler, C. E.; Shenton, W.; Stubbs, G.; Mann, S. Tobacco Mosaic Virus Liquid Crystals as Templates for the Interior Design of Silica Mesophases and Nanoparticles. Adv. Mater. 2001, 13, 1266–1269. DOI: 10.1002/1521-4095(200108)13:16<1266::AID-ADMA1266>3.0.CO;2-9.
  • Mao, C.; Flynn, C. E.; Hayhurst, A.; Sweeney, R.; Qi, J.; Georgiou, G.; Iverson, B.; Belcher, A. M. Viral Assembly of Oriented Quantum Dot Nanowires. Proc. Natl. Acad. Sci. USA. 2003, 100, 6946–6951. DOI: 10.1073/pnas.0832310100.
  • Merzlyak, A.; Lee, S. W. Phage as Template for Hybrid Materials and Mediators for Nanomaterials Synthesis. Curr. Opin. Chem. Biol. 2006, 10, 246–252. DOI DOI: 10.1016/j.cbpa.2006.04.008..
  • Rossetti, R.; Nakahara, S.; Brus, L. E. Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution. Chem. Phys. 1983, 79, 1086–1088. DOI: 10.1063/1.445834.
  • Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites. Nature 1989, 338, 596–597.
  • Kowshik, M.; Deshmukh, N.; Vogel, W.; Urban, J.; Kulkarni, S. K.; Paknikar, K. M. Microbial Synthesis of Semiconductor CdS Nanoparticles, Their Characterization, and Their Use in the Fabrication of an Ideal Diode. Biotechnol. Bioeng. 2002, 78, 583–588. DOI: 10.1002/bit.10233.
  • Bhattacharya, D.; Gupta, R. K. Nanotechnology and Potential of Microorganisms. Crit. Rev. Biotechnol. 2005, 25, 199–204. DOI: 10.1080/07388550500361994.
  • Mandal, D.; Bolander, M. E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The Use of Microorganisms for the Formation of Metal Nanoparticles and Their Application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492. DOI: 10.1007/s00253-005-0179-3.
  • www.google.com.
  • Gericke, M.; Pinches, A. Biological Synthesis of Metal Nanoparticles. Hydrometal 2006, 83, 132–140. DOI: 10.1016/j.hydromet.2006.03.019.
  • Gericke, M.; Pinches, A. Microbial Production of Gold Nanoparticles. Gold Bull. 2006, 39, 22–26. DOI: 10.1007/BF03215529.
  • Lin, Z.; Wu, J.; Xue, R.; Yang, Y. Spectroscopic Characterization of Au3+ Biosorption by Waste Biomass of Saccharomyces cerevisiae. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 761–766. DOI: 10.1016/j.saa.2004.03.029.
  • Jha, A. K.; Prasad, K.; Prasad, K. A Green Low-Cost Biosynthesis of Sb2O3 Nanoparticles. Biochem. Eng. J. 2009, 43, 303–306. DOI: 10.1016/j.bej.2008.10.016.
  • Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulkarni, S. K.; Paknikar, K. M. Extracellular Synthesis of Silver Nanoparticles by a Silver-Tolerant Yeast Strain MKY3. Nanotechnology 2003, 14, 95–100. DOI: 10.1088/0957-4484/14/1/321.
  • Anshup, A.; Venkataraman, J. S.; Subramaniam, C.; Kumar, R. R.; Priya, S.; Kumar, T. R.; Omkumar, R. V.; John, A.; Pradeep, T. Growth of Gold Nanoparticles in Human Cells. Langmuir 2005, 21, 11562–11567. DOI: 10.1021/la0519249.
  • Larios-Rodriguez, E.; Rangel-Ayon, C.; Castillo, S. J.; Zavala, G.; Herrera-Urbina, R. Bio-Synthesis of Gold Nanoparticles by Human Epithelial Cells, in Vivo. Nanotechnology 2011, 22, 355601. DOI: 10.1088/0957-4484/22/35/355601.
  • Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S. K.; Poinern, G. E. J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. DOI: 10.3390/ma8115377.
  • You, H.; Yang, S.; Ding, B.; Yang, H. Synthesis of Colloidal Metal and Metal Alloy Nanoparticles for Electrochemical Energy Applications. Chem. Soc. Rev. 2013, 42, 2880–2904. DOI: 10.1039/c2cs35319a.
  • Kulkarni, N.; Muddapur, U. Biosynthesis of Metal Nanoparticles: A Review. J. Nanotechnol. 2014, 2014, 1–8. DOI: 10.1155/2014/510246.
  • Gardea-Torresdey, J. L.; Tiemann, K. J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; José-Yacamán, M. Gold Nanoparticles Obtained by Bio-Precipitation from Gold (III) Solutions. J. Nanopart. Res. 1999, 1, 397–404.
  • He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of Gold Nanoparticles Using the Bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987. DOI: 10.1016/j.matlet.2007.01.018.
  • He, S.; Zhang, Y.; Guo, Z.; Gu, N. Biosynthesis of Gold Nanowires Using Extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 2008, 24, 476–480.
  • Agnihotri, M.; Joshi, S.; Kumar, A. R.; Zinjarde, S.; Kulkarni, S. Biosynthesis of Gold Nanoparticles by the Tropical Marine Yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 2009, 63, 1231–1234. DOI: 10.1016/j.matlet.2009.02.042.
  • Varshney, R.; Mishra, A. N.; Bhadauria, S.; Gaur, M. S. A Novel Microbial Route to Synthesize Silver Nanoparticles Using Fungus Hormoconis Resinae. Dig. J. Nanomater. Bios. 2009, 4, 349–355.
  • Narges, M.; Shahram, D.; Seyedali, S.; Reza, A.; Khosro, A.; Saeed, S.; Sara, M.; Hamid, R. S.; Ahmad, R. S. Biological Synthesis of Very Small Silver Nanoparticles by Culture Supernatant of Klebsiella pneumonia: The Effects of Visible-Light Irradiation and the Liquid Mixing Process. Mater. Res. Bull. 2009, 44, 1415–1421. DOI: 10.1016/j.materresbull.2008.11.021.
  • Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extra-/Intracellular, Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, Trichothecium sp. J. Biomed. Nanotechnol. 2005, 1, 47–53.
  • Maggy, F. L.; Michael, E. F.; Gordon, S. Synthesis of Palladium Nanoparticles by Reaction of Filamentous Cyanobacterial Biomass with a Palladium(II) Chloride Complex. Langmuir 2007, 23, 8982–8987.
  • Gong, J.; Song, X.; Gao, Y.; Gong, S.; Wang, Y.; Han, J. Microbiological Synthesis of Zinc Sulfide Nanoparticles Using Desulfovibrio desulfuricans. Inorg. NanoMetal Chem. 2018, 48, 96–102. DOI: 10.1080/15533174.2016.1216451.
  • Mathew, S.; Prakash, A.; Radhakrishnan, E. K. Sunlight Mediated Rapid Synthesis of Small Size Range Silver Nanoparticles Using Zingiber officinale Rhizome Extract and Its Antibacterial Activity Analysis. Inorg. NanoMetal Chem. 2018, 48, 139–145. DOI: 10.1080/24701556.2017.1373295.
  • Saifuddin, N.; Wong, C. W.; Yasumira, A. A. N. Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation. E. J. Chem. 2009, 6, 61–70. DOI: 10.1155/2009/734264.
  • Prasad, R.; Kumar, V.; Prasad, K. S. Nanotechnology in Sustainable Agriculture: present Concerns and Future Aspects. Afr. J. Biotechnol. 2014, 13, 705–713. DOI: 10.5897/AJBX2013.13554.
  • Duhan, J. S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The New Perspective in Precision Agriculture. Biotechnol. Rep. 2017, 15, 11–23. DOI: 10.1016/j.btre.2017.03.002.
  • Hoet, P. H. M.; Brüske-Hohlfeld, I.; Salata, O. V. Nanoparticles-Known and Unknown Health Risks. J. Nanobiotechnol. 2004, 2, 12. PMC 544578. PMID 15588280.
  • Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; et al. Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fibre Toxicol. 2005, 2, 8. DOI: 10.1186/1743-8977-2-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.