220
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Rhodium catalysis in the synthesis of fused five-membered N-heterocycles

, , , , &
Pages 1260-1289 | Received 10 Dec 2019, Accepted 24 Feb 2020, Published online: 07 May 2020

References

  • (a) Balaban, A. T.; Oniciu, D. C.; Katritzky, A. R. Chem. Rev. 2004, 104, 2777. (b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942. DOI: 10.1021/cr300122t.
  • Martins, M.; Cunico, W.; Pereira, C.; Sinhorin, A.; Flores, A.; Bonacorso, H.; Zanatta, N. 4-Alkoxy-1,1,1-Trichloro-3-Alken-2-Ones: Preparation and Applications in Heterocyclic Synthesis. Cos. 2004, 1, 391–403. DOI: 10.2174/1570179043366611.
  • (a) Domling, A. Chem. Rev. 2006, 106, 17. (b) Kaur, N. Synth. Commun. 2019, 49, 1205. (c) Kaur, N. Synth. Commun. 2019, 49, 879. (d) Kaur, N. Phosphorus, Sulfur, and Silicon and the Related Elements, 2019, 194, 165. (e) Kaur, N. Synth. Commun. 2019, 49, 1103. (f) Kaur, N. Synth. Commun. 2019, 49, 987. (g) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synth. Commun. 2019, 49, 1345. (h) Kaur, N. Phosphorus, Sulfur, and Silicon and the Related Elements, 2019, 194, 186. (i) Kaur, N. Catal. Lett. 2019, 14, 1513.
  • (a) Kaur, N. J. Heterocycl. Chem. 2015, 52, 953. (b) Kaur, N. Curr. Org. Synth. 2017, 14, 531. (c) Kaur, N. Curr. Org. Synth. 2017, 14, 972. (d) Kaur, N. Mini Rev. Org. Chem. 2017, 14, 3. (e) Kaur, N. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 983. (f) Kaur, N. Inorg. Nano-Met. Chem. 2017, 47, 163. (g) Orru, R. V. A.; de Greef, M. Synthesis, 2003, 10, 1471. (h) Kaur, N. Synth. Commun. 2018, 48, 1551. (i) Kaur, N. Synth. Commun. 2018, 48, 1588. (j) Kaur, N. Synth. Commun. 2018, 48, 1715. DOI: 10.1080/00397911.2018.1460671.
  • (a) Kaur, N. Inorg. Chem. Commun. 2014, 49, 86. (b) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 1173. (c) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 1019. (d) Kaur, N. Synth. Commun. 2014, 44, 3483. (e) Kaur, N. Synth. Commun. 2014, 44, 3509. (f) Kaur, N. Synth. Commun. 2014, 44, 3229. (g) Kaur, N. Catal. Rev. 2015, 57, 478. (h) Reddy, C. R.; Ranjan, R.; Kumaraswamy, P.; Reddy, M. D.; Grée, R. Curr. Org. Chem. 2014, 18, 2603. (i) Reddy, C. R.; Krishna, G.; Reddy, M. D. Org. Biomol. Chem. 2014, 12, 1664. (j) Sudina, P. R.; Motati, D. R.; Seema, A. J. Nat. Prod. 2018, 81, 1399. (k) Xu, Q.; Kulkarni, A. A.; Sajith, A. M.; Hussein, D.; Brown, D.; Güner, O. F.; Reddy, M. D.; Watkins, E. B.; Lassegue, B.; Griendling, K. K.; Bowen, J. P. Bioorg. Med. Chem. 2018, 26, 989. (l) Reddy, M. D.; Watkins, E. B. J. Org. Chem. 2015, 80, 11447. (m) Reddy, M. D.; Fronczek, F. R.; Watkins, E. B. Org. Lett. 2016, 18, 5620. (n) Reddy, M. D.; Blanton, A. N.; Watkins, E. B. J. Org. Chem. 2017, 82, 5080. (o) Motati, D. R.; Uredi, D.; Watkins, E. B. Chem. Sci. 2018, 9, 1782. DOI: 10.1039/c7sc04107a.
  • (a) Kaur, N. J. Iran. Chem. Soc. 2015, 12, 9. (b) Kaur, N. Synth. Commun. 2015, 45, 1269. (c) Kaur, N. Synth. Commun. 2015, 45, 1379. (d) Kaur, N. Synth. Commun. 2014, 44, 3201. (e) Kaur, N. Synth. Commun. 2015, 45, 1. (f) Kaur, N. Synth. Commun. 2015, 45, 35. (g) Kaur, N. Synth. Commun. 2018, 48, 1235. (h) Kaur, N. Synth. Commun. 2018, 48, 1259. (i) Kaur, N. J. Sulfur Chem. 2018, 39, 544.
  • (a) Kaur, N. Synth. Commun. 2015, 45, 789. (b) Kaur, N. Synth. Commun. 2015, 45, 151. (c) Kaur, N. Synth. Commun. 2015, 45, 173. (d) Kaur, N. Synth. Commun. 2015, 45, 273. (e) Kaur, N. Synth. Commun. 2015, 45, 300. (f) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 1375. (g) Kaur, N. Curr. Org. Synth. 2018, 15, 940. (h) Kaur, N. Synth. Commun. 2018, 48, 2457. (i) Kaur, N. Synth. Commun. 2018, 48, 2715. (j) Kaur, N. Synth. Commun. 2018, 48, 2935. (k) Kaur, N. Synth. Commun. 2018, 48, 2815. (l) Kaur, N. Inorg. Chem. Commun. 2018, 99, 82. DOI: 10.1080/00397911.2018.1501488.
  • (a) Kaur, N. Synth. Commun. 2015, 45, 909. (b) Kaur, N. Synth. Commun. 2015, 45, 432. (c) Kaur, N. J. Iranian Chem. Soc. 2014, 11, 523. (d) Kaur, N. Synth. Commun. 2015, 45, 1145. (e) Kaur, N. Synth. Commun. 2015, 45, 1493. (f) Kaur, N. Synth. Commun. 2015, 45, 1599. (g) Kaur, N. Synth. Commun. 2015, 45, 1711. (h) Kaur, N. Synth. Commun. 2019, 49, 483. (i) Kaur, N. Synth. Commun. 2019, 49, 743. (j) Kaur, N. Synth. Commun. 2019, 49, 617.
  • (a) Patil, N.T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (b) Kaur, N. Mini Rev. Org. Chem. 2018, 15, 520. (c) Kaur, N. Mini Rev. Org. Chem. 2019, 16, 481. (d) Kaur, N. Curr. Org. Synth. 2018, 15, 1124. (e) Kaur, N. Curr. Org. Synth. 2019, 16, 258. DOI: 10.2174/1570179416666181207144430.(f) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Ahlawat, N.; Grewal, P. Curr. Org. Chem. 2019, 23, 1214.
  • (a) Kaur, N. Synth. Commun. 2015, 45, 403. (b) Kaur, N. Synth. Commun. 2015, 45, 539. (c) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 2577. (d) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 2615. (e) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 2739. DOI: 10.1080/00397911.2013.796382.
  • (a) Alberico, D.; Scott, M.E.; Lautens, M. Chem. Rev. 2007, 107, 174. (b) Kaur, N. Curr. Organocatal. 2017, 4, 122. (c) Reddy, C. R.; Reddy, M. D.; Dilipkumar, U. Eur. J. Org. Chem. 2014, 6310. (d) Reddy, M. D.; Kobori, H.; Mori, T.; Wu, J.; Kawagishi, H.; Watkins, E. B. J. Nat. Prod. 2017, 80, 2561. (e) Reddy, C. R.; Valleti, R. R.; Reddy, M. D. J. Org. Chem. 2013, 78, 6495. (f) Reddy, C. R.; Reddy, M. D. J. Org. Chem. 2014, 79, 106. (g) Reddy, C. R.; Kumaraswamy, P.; Reddy, M. D. Org. Biomol. Chem. 2012, 10, 9052. DOI: 10.1039/c2ob26934a. (h) Motati, D. R.; Uredi, D.; Watkins, E. B. Curr. Top. Med. Chem. 2019, 19, 1650. (i) Motati, D. R.; Uredi, D.; Watkins, E. B. Studies in Natural Products Chemistry, 2019, 63, 81. (j) Uredi, D.; Motati, D. R.; Watkins, E. B. Chem. Commun. 2019, 55, 3270.
  • Dick, A. R.; Sanford, M. S. Transition Metal Catalyzed Oxidative Functionalization of Carbon–Hydrogen Bonds. Tetrahedron 2006, 62, 2439–2463. DOI: 10.1016/j.tet.2005.11.027.
  • (a) Kaur, N. Catal. Rev. 2015, 57, 1. (b) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 3082. DOI: 10.1080/00397911.2013.796384. (c) Kaur, N.; Kishore, D. Synth. Commun. 2014, 44, 3047. (d) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (e) Kaur, N.; Verma, Y.; Grewal, P.; Bhardwaj, P.; Devi, M. Synth. Commun. 2019, 49, 1847. (f) Kaur, N. Synth. Commun. 2019, 49, 1679. (g) Kaur, N. Synth. Commun. 2019, 49, 1633. (h) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Verma, Y. Synth. Commun. 2019, 49, 1543. (i) Kaur, N. Synth. Commun. 2019, 49, 1459. (j) Kaur, N. Inorganic and Nano-Metal Chem. 2018, 48, 541. (k) Kaur, N.; Bhardwaj, P.; Devi, M.; Verma, Y.; Grewal, P. Synth. Commun. 2019, 49, 2281. (l) Kaur, N. J. Iran. Chem. Soc. 2019, 16, 2525.
  • Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition. Chem. Rev. 2006, 106, 4644–4680. DOI: 10.1021/cr0683966.
  • Jimenez-Gonzalez, L.; Garcia-Munoz, S.; Alvarez-Corral, M.; Munoz-Dorado, M.; Rodriguez-Garcia, I. Chem. Eur. J 2006, 12, 8762.
  • (a) Li, Z.; He, C. Eur. J. Org. Chem. 2006, 19, 4313. DOI: 10.1002/ejoc.200500602. (b) Reddy, C. R.; Rao, N. N.; Reddy, M. D. Eur. J. Org. Chem. 2012, 4910. (c) Reddy, C. R.; Reddy, M. D.; Babu, K. H. Eur. J. Org. Chem. 2012, 6414. (d) Venkateshwarlu, R.; Chinnababu, B.; Ramulu, U.; Reddy, K. P.; Reddy, M. D.; Sowjanya, P.; Rao, P. V.; Aravind, S. MedChemComm 2017, 8, 394. (e) Reddy, C. R.; Dilipkumar, U.; Reddy, M. D.; Rao, N. N. Org. Biomol. Chem. 2013, 11, 3355. (f) Reddy, C. R.; Dilipkumar, U.; Reddy, M. D. Org. Lett. 2014, 16, 3792. (g) Reddy, C. R.; Sujatha, P.; Reddy, M. D. Org. Lett. 2015, 17, 896.(h) Uredi, D.; Motati, D. R.; Watkins, E. B. Org. Lett. 2018, 20, 6336. (i) Nagesh, N.; Raju, G.; Srinivas, R.; Ramesh, P.; Reddy, M. D.; Reddy, C. R. Biochim. Biophys. Acta, 2015, 1850, 129. (j) Liang, S.; Shaaban, S.; Liu, N.-W.; Hofman, K.; Manolikakes, G. Adv. Organomet. Chem. 2018, 69, 135. (k) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110: 624.
  • Jiao, L.; Yuan, C.; Yu, Z.-X. Tandem Rh(i)-Catalyzed [(5 + 2)+1] Cycloaddition/Aldol Reaction for the Construction of Linear Triquinane Skeleton: total Syntheses of (+/-)-Hirsutene and (+/-)-1-Desoxyhypnophilin. J. Am. Chem. Soc. 2008, 130, 4421–4430. DOI: 10.1021/ja7100449.
  • Nag, S.; Batra, S. Applications of Allylamines for the Syntheses of Aza-Heterocycles. Tetrahedron 2011, 67, 8959–9061. DOI: 10.1016/j.tet.2011.07.087.
  • Fruhauf, H.-W. Chem. Rev 1997, 97, 523.
  • Geis, O.; Schmalz, H.-G. New Developments in the Pauson-Khand Reaction. Angew. Chem. Int. Ed. Engl. 1998, 37, 911–914. DOI: 10.1002/(SICI)1521-3773(19980420)37:7<911::AID-ANIE911>3.0.CO;2-O.
  • Chung, Y. K. Coord. Chem. Rev 1999, 188, 297.
  • Kim, S.-W.; Son, S. U.; Lee, S. I.; Hyeon, T.; Chung, Y. K. Cobalt on Mesoporous Silica: The First Heterogeneous Pauson − Khand Catalyst. J. Am. Chem. Soc. 2000, 122, 1550–1551. DOI: 10.1021/ja9939237.
  • Comely, A. C.; Gibson, S. E.; Hales, N. J. Polymer-Supported Cobalt Carbonyl Complexes as Novel Solid-Phase Catalysts of the Pauson-Khand Reaction. Chem. Commun. 2000, 4, 305–306 .
  • Hayashi, M.; Hashimoto, Y.; Yamamoto, Y.; Usuki, J.; Saigo, K. Phosphane Sulfide/Octacarbonyldicobalt-Catalyzed Pauson - Khand Reaction under an Atmospheric Pressure of Carbon Monoxide. Angew. Chem. Int. Ed. Engl. 2000, 39, 631–633. DOI: 10.1002/(sici)1521-3773(20000204)39:3<631::aid-anie631>3.0.co;2-b.
  • Pagenkopf, B. L.; Belanger, D. B.; O'Mahony, D. J. R.; Livinghouse, T. (Alkylthio)Alkynes as Addends in the Co(0) Catalyzed Intramolecular Pauson-Khand Reaction. Substituent Driven Enhancements of Annulation Efficiency and Stereoselectivity. Synthesis 2000, 2000, 1009–1019. DOI: 10.1055/s-2000-6301.
  • Krafft, M. E.; Bonaga, L. V. R. Dodecacarbonyltetracobalt Catalysis in the Thermal Pauson-Khand Reaction This Work Was Supported by the National Science Foundation and the Donors to the Krafft Research Fund. Angew. Chem. Int. Ed. Engl. 2000, 39, 3676–3680. DOI: 10.1002/1521-3773(20001016)39:20<3676::aid-anie3676>3.0.co;2-k.
  • Son, S. U.; Lee, S. I.; Chung, Y. K. Cobalt on Charcoal: A Convenient and Inexpensive Heterogeneous Pauson-Khand Catalyst This Work Supported by a Grant from the Korea Science and Engineering Foundation (KOSEF) (1999-1-122-001-5) and the KOSEF through the Center for Molecular Catalysis. We Thank Prof. T. Hyeon and S.-W. Kim for Providing the Mesoporous Carbon and S.U.S. and S.I.L. thank the BK21 Fellowship. Angew. Chem. Int. Ed. Engl. 2000, 39, 4158–4160. DOI: 10.1002/1521-3773(20001117)39:22<4158::aid-anie4158>3.0.co;2-#.
  • Krafft, M. E.; Bonaga, L. V. R.; Hirosawa, C. Practical Cobalt Carbonyl Catalysis in the Thermal Pauson-Khand Reaction: efficiency Enhancement Using Lewis Bases. J. Org. Chem. 2001, 66, 3004–3020. DOI: 10.1021/jo0057708.
  • Kim, S.-W.; Son, S. U.; Lee, S. S.; Hyeon, T.; Chung, Y. K. Chem. Commun. 2001, 21, 2212–2213. DOI: 10.1039/b107577m.
  • Comely, A. C.; Gibson, S. E.; Stevenazzi, A.; Hales, N. J. New Stable Catalysts of the Pauson–Khand Annelation. Tetrahedron Lett. 2001, 42, 1183–1185. DOI: 10.1016/S0040-4039(00)02204-8.
  • Shibata, T.; Toshida, N.; Takagi, K. Catalytic Pauson-Khand-Type Reaction Using Aldehydes as a CO Source. Org. Lett. 2002, 4, 1619–1621. DOI: 10.1021/ol025836g.
  • Gibson, S. E.; Johnstone, C.; Stevenazzi, A. A Stable Catalyst of the Pauson–Khand Annelation. Tetrahedron 2002, 58, 4937–4942. DOI: 10.1016/S0040-4020(02)00420-9.
  • Shibata, T.; Toshida, N.; Takagi, K. Rhodium Complex-Catalyzed Pauson-Khand-Type Reaction with Aldehydes as a CO Source. J. Org. Chem. 2002, 67, 7446–7450. DOI: 10.1021/jo0262661.
  • Ishizaki, M.; Satoh, H.; Hoshino, O. Intramolecular Pauson-Khand Reaction of Various 2-Aryl-1,6-Enynes: Synthesis of Bicyclic Compounds Bearing Quaternary Carbon Center. Chem. Lett. 2002, 31, 1040–1041. DOI: 10.1246/cl.2002.1040.
  • Jiang, B.; Xu, M. Catalytic Diastereoselective Pauson-Khand Reaction: An Efficient Route to Enantiopure Cyclopenta[c]Proline Derivatives. Org. Lett. 2002, 4, 4077–4080. DOI: 10.1021/ol026826i.
  • Park, K. H.; Son, S. U.; Chung, Y. K. Immobilized Heterobimetallic Ru/Co Nanoparticle-Catalyzed Pauson–Khand-Type Reactions in the Presence of Pyridylmethyl Formate. Chem. Commun. 2003, 15, 1898–1899. DOI: 10.1039/B304325H.
  • Inagaki, F.; Mukai, C. Rhodium(I)-Catalyzed Intramolecular Pauson-Khand-Type [2 + 2 + 1] Cycloaddition of Allenenes. Org. Lett. 2006, 8, 1217–1220. DOI: 10.1021/ol0600990.
  • Wender, P. A.; Croatt, M. P.; Deschamps, N. M. Metal-Catalyzed [2 + 2+1] Cycloadditions of 1,3-Dienes, Allenes, and CO. Angew. Chem. Int. Ed. Engl. 2006, 45, 2459–2462. DOI: 10.1002/anie.200600300.
  • Lautens, M.; Klute, W.; Tam, W. Transition Metal-Mediated Cycloaddition Reactions. Chem. Rev. 1996, 96, 49–92. DOI: 10.1021/cr950016l.
  • Nakamura, I.; Yamamoto, Y. Transition Metal-Catalyzed Reactions of Methylenecyclopropanes. Adv. Synth. Catal. 2002, 344, 111.
  • Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Heterocycles from Alkylidenecyclopropanes. Chem. Rev. 2003, 103, 1213–1269. DOI: 10.1021/cr010005u.
  • Murakami, M.; Ishida, N.; Miura, T. Solvent and Ligand Partition Reaction Pathways in Nickel-Mediated Carboxylation of Methylenecyclopropanes. Chem. Commun. 2006, 14, 643. DOI: 10.1039/b515684j.
  • Castro-Rodrigo, R.; Esteruelas, M. A.; Fuertes, S.; Lopez, A. M.; Lopez, F.; Mascarenas, J. L.; Mozo, S.; Onate, E.; Saya, L.; Villarino, L. Formation of Osmium- and Ruthenium-Cyclobutylidene Complexes by Ring Expansion of Alkylidenecyclopropanes. J. Am. Chem. Soc. 2009, 131, 15572–15573. DOI: 10.1021/ja904893j.
  • Castro-Rodrigo, R.; Esteruelas, M. A.; Lopez, A. M.; Lopez, F.; Mascarenas, J. L.; Olivan, M.; On Ate, E.; Saya, L.; Villarino, L. Cleavage of Both C(sp3)-C(sp2) Bonds of Alkylidenecyclopropanes: formation of Ethylene-Osmium-Vinylidene Complexes. J. Am. Chem. Soc. 2010, 132, 454–455. DOI: 10.1021/ja909240q.
  • Evans, P. A.; Inglesby, P. A. Intermolecular Rhodium-Catalyzed [3 + 2+2] Carbocyclization of Alkenylidenecyclopropanes with Activated Alkynes: regio- and Diastereoselective Construction of Cis-Fused Bicycloheptadienes. J. Am. Chem. Soc. 2008, 130, 12838–12839. DOI: 10.1021/ja803691p.
  • Lautens, M.; Ren, Y.; Delanghe, P. H. M. Stereochemical Control in Metal-Catalyzed [3 + 2] Cycloadditions of Methylenecyclopropanes. J. Am. Chem. Soc. 1994, 116, 8821–8822. DOI: 10.1021/ja00098a057.
  • Komagawa, S.; Saito, S. Nickel-Catalyzed Three-Component [3 + 2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes-Selective Synthesis of Multisubstituted Cycloheptadienes. Angew. Chem. Int. Ed. Engl. 2006, 45, 2446–2449. DOI: 10.1002/anie.200504050.
  • Saya, L.; Bhargava, G.; Navarro, M. A.; Gulias, M.; Lopez, F.; Fernandez, I.; Castedo, L.; Mascarenas, J. L. Nickel-Catalyzed [3 + 2+2] Cycloadditions between Alkynylidenecyclopropanes and Activated Alkenes. Angew. Chem. Int. Ed. Engl. 2010, 49, 9886–9890. DOI: 10.1002/anie.201004438.
  • Lopez, F.; Delgado, A.; Rodriguez, J. R.; Castedo, L.; Mascarenas, J. L. Ruthenium-Catalyzed [3 + 2] Intramolecular Cycloaddition of Alk-5-Ynylidenecyclopropanes Promoted by the “First-Generation” Grubbs Carbene Complex. J. Am. Chem. Soc. 2004, 126, 10262–10263. DOI: 10.1021/ja0480466.
  • Trillo, B.; Gulias, M.; Lopez, F.; Castedo, L.; Mascarenas, J. L. Divergent Reactivity of Alk-5-Ynylidenecyclopropanes in the Presence of the 1st or the 2nd Generation Grubbs’ Catalysts. J. Organomet. Chem. 2005, 690, 5609–5615.
  • Lewis, R. T.; Motherwell, W. B.; Shipman, M. Observations on the Intramolecular Palladium(0) Catalysed [3+2] Cycloaddition of Diphenylmethylenecyclopropanes. J. Chem. Soc. Chem. Commun. 1988, 14, 948-950
  • Bapuji, S. A.; Motherwell, W. B.; Shipman, M. Regiospecific Intramolecular [2π + 2σ] Cycloadditions of Methylene Cyclopropanes. Tetrahedron Lett. 1989, 30, 7107–7110. DOI: 10.1016/S0040-4039(01)93436-7.
  • Motherwell, W. B.; Shipman, M. Intramolecular Cycloadditions of Methylenecyclopropanes: A Novel Chelation Effect. Tetrahedron Lett. 1991, 32, 1103–1106. DOI: 10.1016/S0040-4039(00)74499-6.
  • Lewis, R. T.; Motherwell, W. B.; Shipman, M.; Slawin, A. M. Z.; Williams, D. J. An Improved Preparation of Diphenylmethylenecyclopropanes and Their Use in Intramolecular Palladium Catalysed [3 + 2] Cycloadditions. Tetrahedron 1995, 51, 3289–3302. DOI: 10.1016/0040-4020(95)00051-9.
  • Corlay, H.; Lewis, R. T.; Motherwell, W. B.; Shipman, M. Intramolecular Palladium Catalysed [3 + 2] Cycloadditions of Methylenecyclopropanes with Acetylenic Acceptors. Tetrahedron 1995, 51, 3303–3318. DOI: 10.1016/0040-4020(95)00052-A.
  • Lautens, M.; Ren, Y. Transition Metal Catalyzed Stereospecific Intramolecular [3 + 2] Cycloadditions of Methylenecyclopropanes with Alkynes. J. Am. Chem. Soc. 1996, 118, 9597–9605. DOI: 10.1021/ja9611809.
  • Corlay, H.; Motherwell, W. B.; Pennell, A. M. K.; Shipman, M.; Slawin, A. M. Z.; Williams, D. J.; Binger, P.; Stepp, M. Stereochemical Aspects of Intramolecular Palladium Catalysed [3 + 2] Cycloadditions of Methylenecyclopropanes. Tetrahedron 1996, 52, 4883–4902. DOI: 10.1016/0040-4020(96)00160-3.
  • Delgado, A.; Rodriguez, J. R.; Castedo, L.; Mascarenas, J. L. Palladium-Catalyzed [3 + 2] Intramolecular Cycloaddition of Alk-5-Ynylidenecyclopropanes: A Rapid, Practical Approach to Bicyclo[3.3.0]Octenes. J. Am. Chem. Soc. 2003, 125, 9282–9283. DOI: 10.1021/ja0356333.
  • Zhang, D.-H.; Shi, M. Rhodium(I)-Catalyzed [3 + 2] Intramolecular Cycloaddition of Alkylidenecyclopropane–Propargylic Esters. Tetrahedron Lett. 2012, 53, 487–490. DOI: 10.1016/j.tetlet.2011.11.084.
  • Quesada, M. L.; Schlessinger, R. H.; Parsons, W. H. 3,4-Dimethyl-Cis-Bicyclo[3.3.0.]-3-Octene-2,8-Dione: A Potentially Useful Pentalenolactone Synthon. J. Org. Chem. 1978, 43, 3968–3970. DOI: 10.1021/jo00414a039.
  • Barton, J. W.; Shepherd, M. K. Synthesis and Rearrangements of 1,1′-bi(Benzocyclobutylidene) and Its Derivatives. J. Chem. Soc. Perkin Trans. 1 1987, 0, 1561–1565. .
  • Patra, P. K.; Sriram, V.; Ila, H.; Junjappa, H. Lewis Acid Induced Tandem Carbocationic Ring Opening and Cyclizations of α-[Bis(Methylthio)Methylene]Ethyl-2-Styrylcyclopropyl Ketones and Carbinols: Novel Approach to Bicyclo[3.3.0]Octene and Cyclopent[a]Indene Frameworks. Tetrahedron 1998, 54, 531–540. DOI: 10.1016/S0040-4020(97)10313-1.
  • Hagiwara, H.; Katsumi, T.; Endou, S.; Hoshi, T.; Suzuki, T. Domino Ring Opening–Ring Closing Metathesis (ROM–RCM) Strategy toward Bicyclo[n.3.0]Cycloalkenes. Tetrahedron 2002, 58, 6651–6654. DOI: 10.1016/S0040-4020(02)00690-7.
  • Mandelt, K.; Meyer-Wilmes, I.; Fitjer, L. Synthesis and Rearrangement of [1,1′-Bicyclobutyl]-1-Ols and Spiro[3.4]Octan-5-Ols: A General Access to Bicyclo[3.3.0]Octenes (Hexahydropentalenes). Tetrahedron 2004, 60, 11587–11595. DOI: 10.1016/j.tet.2004.09.074.
  • Phillips, A. J.; Hart, A. C.; Henderson, J. A. A Synthesis of the Bicyclo[3.3.0]Octene Core of Geodin A. Tetrahedron Lett. 2006, 47, 3743–3745. DOI: 10.1016/j.tetlet.2006.03.124.
  • Oger, C.; Brinkmann, Y.; Bouazzaoui, S.; Durand, T.; Galano, J.-M. Stereocontrolled Access to Isoprostanes via a Bicyclo[3.3.0]Octene Framework. Org. Lett. 2008, 10, 5087–5090. DOI: 10.1021/ol802104z.
  • Zhang, D.-H.; Zhang, Z.; Shi, M. Transition Metal-Catalyzed Carbocyclization of Nitrogen and Oxygen-Tethered 1,n-Enynes and Diynes: synthesis of Five or Six-Membered Heterocyclic Compounds. Chem. Commun. (Camb.) 2012, 48, 10271–10279. DOI: 10.1039/c2cc34739c.
  • Bruneau, C. Electrophilic Activation and Cycloisomerization of Enynes: A New Route to Functional Cyclopropanes. Angew. Chem. Int. Ed. Engl. 2005, 44, 2328–2334. DOI: 10.1002/anie.200462568.
  • Marco-Contelles, J.; Soriano, E. Recent Developments in the Metal-Catalyzed Reactions of Metallocarbenoids from Propargylic Esters. Chemistry 2007, 13, 1350–1357. DOI: 10.1002/chem.200601522.
  • Marion, N.; Nolan, S. P. Propargylic Esters in Gold Catalysis: access to Diversity. Angew. Chem. Int. Ed. Engl. 2007, 46, 2750–2752. DOI: 10.1002/anie.200604773.
  • Zhang, Z.; Shi, M. Titanium(IV) Chloride-Mediated Intramolecular Ring Enlargement of Methylenecyclopropanes with Propargylic Esters: A Concise Synthesis of Bicyclo[4.2.0]Oct-5-Ene Derivatives. Tetrahedron Lett 2011, 52, 6541–6544. DOI: 10.1016/j.tetlet.2011.09.124.
  • Evans, P. A.; Robinson, J. E. Regio- and Diastereoselective Tandem Rhodium-Catalyzed Allylic Alkylation/Pauson-Khand Annulation Reactions. J. Am. Chem. Soc. 2001, 123, 4609–4610. DOI: 10.1021/ja015531h.
  • Jiao, L.; Ye, S.; Yu, Z.-X. Rh(I)-Catalyzed Intramolecular [3 + 2] Cycloaddition of Trans-Vinylcyclopropane-Enes. J. Am. Chem. Soc. 2008, 130, 7178–7179. DOI: 10.1021/ja8008715.
  • Jiao, L.; Lin, M.; Yu, Z.-X. Rh(I)-Catalyzed Intramolecular [3 + 2] Cycloaddition Reactions of 1-Ene-, 1-Yne- and 1-Allene-Vinylcyclopropanes. Chem. Commun. (Camb.) 2010, 46, 1059–1061. DOI: 10.1039/b922417c.
  • Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N. Intermolecular Transition Metal-Catalyzed [4 + 2 + 2] Cycloaddition Reactions: A New Approach to the Construction of Eight-Membered Rings. J. Am. Chem. Soc. 2002, 124, 8782–8783. DOI: 10.1021/ja026351q.
  • D’Souza, D. M.; Muller, T. J. J. Multi-Component Syntheses of Heterocycles by Transition-metal Catalysis. Chem. Soc. Rev. 2007, 36, 1095-1108.
  • Lee, H. W.; Lee, L. N.; Chan, A. S. C.; Kwong, F. Y. Microwave‐Assisted Rhodium‐Complex‐Catalyzed Cascade Decarbonylation and Asymmetric Pauson–Khand‐Type Cycli­Zations. Eur. J. Org. Chem. 2008, 2008, 3403–3406. DOI: 10.1002/ejoc.200800272.
  • Jeong, N.; Seo, S. D.; Shin, J. Y. One Pot Preparation of Bicyclopentenones from Propargyl Malonates (and Propargylsulfonamides) and Allylic Acetates by a Tandem Action of Catalysts. J. Am. Chem. Soc. 2000, 122, 10220–10221. DOI: 10.1021/ja001750b.
  • Wender, P. A.; Husfeld, C. O.; Langkopf, E.; Love, J. A. First Studies of the Transition Metal-Catalyzed [5 + 2] Cycloadditions of Alkenes and Vinylcyclopropanes: Scope and Stereochemistry. J. Am. Chem. Soc. 1998, 120, 1940–1941. DOI: 10.1021/ja973650k.
  • Wender, P. A.; Husfeld, C. O.; Langkopf, E.; Love, J. A.; Pleuss, N. The First Metal-Catalyzed Intramolecular [5 + 2] Cycloadditions of Vinylcyclopropanes and Alkenes: Scope, Stereochemistry, and Asymmetric Catalysis. Tetrahedron 1998, 54, 7203–7220. DOI: 10.1016/S0040-4020(98)00355-X.
  • Wender, P. A.; Sperandio, D. A New and Selective Catalyst for the [5 + 2] Cycloaddition of Vinylcyclopropanes and Alkynes. J. Org. Chem. 1998, 63, 4164–4165. DOI: 10.1021/jo9804240.
  • Wender, P. A.; Glorius, F.; Husfeld, C. O.; Langkopf, E.; Love, J. A. Transition Metal-Catalyzed [5 + 2] Cycloadditions of Allenes and Vinylcyclopropanes: First Studies of Endo − Exo Selectivity, Chemoselectivity, Relative Stereochemistry, and Chirality Transfer. J. Am. Chem. Soc. 1999, 121, 5348–5349. DOI: 10.1021/ja9903072.
  • Wender, P. A.; Dyckman, A. J.; Husfeld, C. O.; Kadereit, D.; Love, J. A.; Rieck, H. Transition Metal-Catalyzed [5 + 2] Cycloadditions with Substituted Cyclopropanes: First Studies of Regio- and Stereoselectivity. J. Am. Chem. Soc. 1999, 121, 10442–10443.
  • Trost, B. M.; Toste, F. D.; Shen, H. Ruthenium-Catalyzed Intramolecular [5 + 2] Cycloadditions. J. Am. Chem. Soc. 2000, 122, 6138–2380. DOI: 10.1021/ja0046517.
  • Trost, B. M.; Shen, H. C. On the Regioselectivity of the Ru-Catalyzed Intramolecular [5 + 2] Cycloaddition. Org. Lett. 2000, 2, 2523–2525. DOI: 10.1021/ol0061945.
  • Lee, S. I.; Park, S. Y.; Park, J. H.; Jung, I. G.; Choi, S. Y.; Chung, Y. K.; Lee, B. Y. Rhodium N-Heterocyclic Carbene-Catalyzed [4 + 2] and [5 + 2] Cycloaddition Reactions. J. Org. Chem. 2006, 71, 91–96. DOI: 10.1021/jo051685u.
  • Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chem. Rev. 2009, 109, 3612–3676. DOI: 10.1021/cr900074m.
  • Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. Transition Metal-Catalyzed [6 + 2] Cycloadditions of 2-Vinylcyclobutanones and Alkenes: A New Reaction for the Synthesis of Eight-Membered Rings. J. Am. Chem. Soc. 2000, 122, 7815–7816.
  • Yu, Z.-X.; Wang, Y.; Wang, Y. Transition-Metal-Catalyzed Cycloadditions for the Synthesis of Eight-Membered Carbocycles. Chem Asian J. 2010, 5, 1072–1088. DOI: 10.1002/asia.200900712.
  • Gilbertson, S. R.; Deboef, B. Rhodium Catalyzed [4 + 2 + 2] Cycloaddition and Alkyne Insertion: A New Route to Eight-Membered Rings. J. Am. Chem. Soc. 2002, 124, 8784–8785. DOI: 10.1021/ja026536x.
  • Deboef, B.; Counts, W. R.; Gilbertson, S. R. Rhodium-Catalyzed Synthesis of Eight-Membered Rings. J. Org. Chem. 2007, 72, 799–804. DOI: 10.1021/jo0620462.
  • Gilbertson, S. R.; Hoge, G. S. Rhodium Catalyzed Intramolecular [4 + 2] Cycloisomerization Reactions. Tetrahedron Lett. 1998, 39, 2075–2078. DOI: 10.1016/S0040-4039(98)00265-2.
  • Gilbertson, S. R.; Hoge, G. S.; Genov, D. Rhodium-Catalyzed Asymmetric [4 + 2] Cycloisomerization Reactions. J. Org. Chem. 1998, 63, 10077–10080. DOI: 10.1021/jo981870q.
  • Bauer, R. A.; DiBlasi, C. M.; Tan, D. S. The Tert-Butylsulfinamide Lynchpin in Transition-Metal-Mediated Multiscaffold Library Synthesis. Org. Lett. 2010, 12, 2084–2087. DOI: 10.1021/ol100574y.
  • Evans, P. A.; Baum, E. W. Diastereoselective Intramolecular Temporary Silicon-Tethered Rhodium-Catalyzed [4 + 2+2] Cycloisomerization Reactions: regiospecific Incorporation of Substituted 1,3-Butadienes. J. Am. Chem. Soc. 2004, 126, 11150–11151. DOI: 10.1021/ja046030+.
  • Lim, S.-G.; Lee, J. H.; Moon, C. W.; Hong, J.-B.; Jun, C.-H. Rh(I)-Catalyzed Direct Ortho-Alkenylation of Aromatic Ketimines with Alkynes and Its Application to the Synthesis of Isoquinoline Derivatives. Org. Lett. 2003, 5, 2759–2761. DOI: 10.1021/ol035083d.
  • Evans, P. A.; Baum, E. V.; Fazal, A. N.; Pink, M. Diastereoselective Metal-Catalyzed [4 + 2 + 2] Carbocyclization Reactions Utilizing a Rhodium N-Heterocyclic Carbene (NHC) Complex: The First Example of a Rhodium NHC-Catalyzed [m + n+o] Carbocyclization. Chem. Commun. 2005, 1, 63. DOI: 10.1039/b413438a.
  • Baik, M.-H.; Baum, E. W.; Burland, M. C.; Evans, P. A. Diastereoselective Intermolecular Rhodium-Catalyzed [4 + 2 + 2] Carbocyclization Reactions: computational and Experimental Evidence for the Intermediacy of an Alternative Metallacycle Intermediate. J. Am. Chem. Soc. 2005, 127, 1602–1603. DOI: 10.1021/ja043521l.
  • Wender, P. A.; Christy, J. P. Rhodium(I)-Catalyzed [4 + 2+2] Cycloadditions of 1,3-Dienes, Alkenes, and Alkynes for the Synthesis of Cyclooctadienes. J. Am. Chem. Soc. 2006, 128, 5354–5355. DOI: 10.1021/ja060878b.
  • Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. A Computationally Designed Rh(I)-Catalyzed Two-Component [5 + 2+1] Cycloaddition of Ene-Vinylcyclopropanes and CO for the Synthesis of Cyclooctenones. J. Am. Chem. Soc. 2007, 129, 10060–10061. DOI: 10.1021/ja072505w.
  • Huang, F.; Yao, Z.-K.; Wang, Y.; Wang, Y.; Zhang, J.; Yu, Z.-X. Cover Picture: RhI-Catalyzed Two-Component [(5 + 2)+1] Cycloaddition Approach toward [5-8-5] Ring Systems (Chem. Asian J. 7/2010). Chem. Asian J. 2010, 5, 1501–1501. DOI: 10.1002/asia.201090020.
  • Trost, B. M.; Shen, H. C. Constructing Tricyclic Compounds Containing a Seven-Membered Ring by Ruthenium-Catalyzed Intramolecular [5 + 2] Cycloaddition. Angew. Chem. Int. Ed. 2001, 40, 2313–2316. DOI: 10.1002/1521-3773(20010618)40:12<2313::AID-ANIE2313>3.0.CO;2-H.
  • Wee, A. G. H.; McLeod, D. D. Studies on the Rh(II)-Catalyzed C-H Insertion Reaction of Some Derivatives of N -[4-{(S)-1,2-Dihydroxy- butyl}]-dazoanilides: Site-Selectivity. Heterocycles 2000, 53, 637.
  • Doyle, M. P.; Davies, S. B.; May, E. J. High Selectivity from Configurational Match/Mismatch in Carbon-Hydrogen Insertion Reactions of Steroidal Diazoacetates Catalyzed by Chiral Dirhodium(II) Carboxamidates. J. Org. Chem. 2001, 66, 8112–8119. DOI: 10.1021/jo015932f.
  • Doyle, M. P.; May, E. J. Enantioselective β-Lactone Formation from Phenyldiazoacetates via Catalytic Intramolecular Carbon-Hydrogen Insertion. Synlett 2001, 2001, 967-969.
  • Merlic, C. A.; Zechman, A. L.; Miller, M. M. Reactivity of (Eta(6)-Arene)Tricarbonylchromium Complexes with Carbenoids: arene Activation or Protection? J. Am. Chem. Soc. 2001, 123, 11101–11102. DOI: 10.1021/ja011767+.
  • Zheng, S.-L.; Yu, W.-Y.; Che, C.-M. Ruthenium(II) Porphyrin Catalyzed Formation of (Z)-4-Alkyloxycarbonyl- Methylidene-1,3-Dioxolanes from Gamma-Alkoxy-Alpha-Diazo-Beta-Ketoesters. Org. Lett. 2002, 4, 889–892. DOI: 10.1021/ol010283f.
  • Yoon, C. H.; Flanigan, D. L.; Chong, B.-D.; Jung, K. W. A Novel Synthetic Route to Chiral Gamma-Lactams from Alpha-Amino Acids via Rh-Catalyzed Intramolecular C-H Insertion. J. Org. Chem. 2002, 67, 6582–6584. DOI: 10.1021/jo0259717.
  • Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto, S. Enantio- and Diastereoselective Synthesis of Cis-2-Aryl-3-Methoxycarbonyl-2,3-Dihydrobenzofurans via the Rh(II)-Catalyzed C-H Insertion Process. Org. Lett. 2002, 4, 3887–3890. DOI: 10.1021/ol0267127.
  • Doyle, M. P.; Hu, W.; Wee, A. G. H.; Wang, Z.; Duncan, S. C. Influences of Catalyst Configuration and Catalyst Loading on Selectivities in Reactions of Diazoacetamides. Barrier to Equilibrium between Diastereomeric Conformations. Org. Lett. 2003, 5, 407–410. DOI: 10.1021/ol027157b.
  • Wee, A. G. H. A Dirhodium(II)-Carbenoid Route to (-)- and (+)-Geissman-Waiss Lactone: synthesis of (1R,7R,8R)-(-)-Turneforcidine. J. Org. Chem. 2001, 66, 8513–8517. DOI: 10.1021/jo010753j.
  • Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. Intramolecular C-H Amination Reactions: exploitation of the Rh(2)(II)-Catalyzed Decomposition of Azidoacrylates. J. Am. Chem. Soc. 2007, 129, 7500–7501. DOI: 10.1021/ja072219k.
  • Zimmerman, H. E.; Wright, C. W. Triplet Photochemistry of Acyl and Imino Cyclopropenes. 164. A Rearrangement to Afford Furans and Pyrroles: Reaction and Mechanisms. J. Am. Chem. Soc. 1992, 114, 363–6613. DOI: 10.1021/ja00027a058.
  • Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.; et al. Potent Inhibitors of Secretory Phospholipase A2: synthesis and Inhibitory Activities of Indolizine and Indene Derivatives. J. Med. Chem. 1996, 39, 3636–3658. DOI: 10.1021/jm960395q.
  • Gundersen, L.-L.; Malterud, K. E.; Negussie, A. H.; Rise, F.; Teklu, S.; Ostby, O. B. Indolizines as Novel Potent Inhibitors of 15-Lipoxygenase. Bioorg. Med. Chem. 2003, 11, 5409–5415. DOI: 10.1016/j.bmc.2003.09.033.
  • Chuprakov, S.; Gevorgyan, V. Regiodivergent Metal-Catalyzed Rearrangement of 3-Iminocyclopropenes into N-Fused Heterocycles. Org. Lett. 2007, 9, 4463–4466. DOI: 10.1021/ol702084f.
  • Rech, J. C.; Yato, M.; Duckett, D.; Ember, B.; LoGrasso, P. V.; Bergman, R. G.; Ellman, J. A. Synthesis of Potent Bicyclic Bisarylimidazole c-Jun N-Terminal Kinase Inhibitors by Catalytic C-H Bond Activation. J. Am. Chem. Soc. 2007, 129, 490–491. DOI: 10.1021/ja0676004.
  • Wee, A. G. H.; Liu, B.; Zhang, L. Dirhodium Tetraacetate Catalyzed Carbon-Hydrogen Insertion Reaction in N-Substituted.alpha.-Carbomethoxy-.Alpha.-Diazoacetanilides and Structural Analogs. Substituent and Conformational Effects. J. Org. Chem. 1992, 57, 4404–4414. DOI: 10.1021/jo00042a018.
  • G. H. Wee, A.; Liu, B.; G. Wee, A. Synthesis of Oxindoles by the Nafion-H Catalysed Decarboxylative Cyclization of a-Carbomethoxy-a-Diazoacetanilides. Heterocycles 1993, 36, 445. DOI: 10.3987/COM-92-6258.
  • Tolliari, S.; Palmisano, G.; Genini, S.; Cravatto, G.; Govenzana, G. B.; Giovanni, B.; Penoni, A. Synthesis of Furocoumarins via Rhodium(II)-Catalysed Heterocyclisation of 3-Diazobenzopyran-2,4-(3H)-Dione with Terminal Alkynes. Synthesis 2001, 2001, 0735–0740. DOI: 10.1055/s-2001-12765.
  • Rosenfeld, M. J.; Ravi Shankar, B. K.; Shechter, H. Rhodium(II) Acetate-Catalyzed Reactions of 2-Diazo-1,3-Indandione and 2-Diazo-1-Indanone with Various Substrates. J. Org. Chem. 1988, 53, 2699–2705. DOI: 10.1021/jo00247a007.
  • Pirrung, M. C.; Blume, F. Rhodium-Mediated Dipolar Cycloaddition of Diazoquinolinediones. J. Org. Chem. 1999, 64, 3642–3649. DOI: 10.1021/jo982503h.
  • Padwa, A.; Straub, C. S. Synthesis of Furo[3,4-c]Furans Using a Rhodium(II)-Catalyzed Cyclization/Diels-Alder Cycloaddition Sequence. J. Org. Chem. 2003, 68, 227–239. DOI: 10.1021/jo020413d.
  • Padwa, A.; Straub, C. S. Facile Construction of Novel Polycyclic Ring Systems Using a Metallocarbenoid-Induced Cyclization of Acetylenic Diazo Carbonyl Compounds. Org. Lett. 2000, 2, 2093–2095. DOI: 10.1021/ol006004q.
  • Ma, S.; Zhang, J. 2,3,4- or 2,3,5-Trisubstituted Furans: catalyst-Controlled Highly Regioselective Ring-Opening Cycloisomerization Reaction of Cyclopropenyl Ketones. J. Am. Chem. Soc. 2003, 125, 12386–12387. DOI: 10.1021/ja036616g.
  • Rubin, M.; Ryabchuk, P. G. Rearrangements of Cyclopropenes into Five-Membered Aromatic Heterocycles: mechanistic Aspect. Chem. Heterocycl. Comp. 2012, 48, 126–138. DOI: 10.1007/s10593-012-0976-4.
  • Tanaka, K.; Suzuki, N.; Nishida, G. Cationic Rhodium(I)/Modified-BINAP Catalyzed [2 + 2+2] Cycloaddition of Alkynes with Nitriles. Eur. J. Org. Chem. 2006, 2006, 3917–3922. DOI: 10.1002/ejoc.200600347.
  • Saito, A.; Hironaga, M.; Oda, S.; Hanzawa, Y. Rh(I)-Catalyzed Intramolecular Hetero-[4 + 2] Cycloaddition of ω-Alkynyl-Vinyl Oximes. Tetrahedron Lett 2007, 48, 6852–6855. DOI: 10.1016/j.tetlet.2007.07.185.
  • Yu, R. T.; Rovis, T. Enantioselective Rhodium-Catalyzed [2 + 2+2] Cycloaddition of Alkenyl Isocyanates and Terminal Alkynes: application to the Total Synthesis of (+)-Lasubine II. J. Am. Chem. Soc. 2006, 128, 12370–12371. DOI: 10.1021/ja064868m.
  • Albano, P.; Aresta, M. Some Catalytic Properties of Rh(Diphos)(η-BPh4). J. Organomet. Chem 1980, 190, 243–246. DOI: 10.1016/S0022-328X(00)83981-9.
  • Schafer, H.; Marcy, R.; Ruping, T.; Singer, H. J. Organomet. Chem 1982, 240, 17.
  • Ohshita, J.; Furumori, K.; Matsuguchi, A.; Ishikawa, M. Synthesis and Reactions of (E)-1,4-Bis(Silyl)-Substituted Enynes. J. Org. Chem. 1990, 55, 3277–3280. DOI: 10.1021/jo00297a054.
  • Chuprakov, S.; Hwang, W.; Gevorgyan, V. Rh-Catalyzed Transannulation of Pyridotriazoles with Alkynes and Nitriles. Angew. Chem. 2007, 119, 4841–4843. DOI: 10.1002/ange.200700804.
  • Chattopadhyay, B.; Gevorgyan, V. Transition-Metal-Catalyzed Denitrogenative Transannulation: converting Triazoles into Other Heterocyclic Systems. Angew. Chem. Int. Ed. Engl. 2012, 51, 862–872. DOI: 10.1002/anie.201104807.
  • Müller, P.; Pautex, N.; Doyle, M. P.; Bagheri, V. Rh(II)-Catalyzed Isomerizations of Cyclopropenes Evidence for Rh(II)-Complexed Vinylcarbene Intermediates. Hca. 1990, 73, 1233–1241. DOI: 10.1002/hlca.19900730513.
  • Cho, S. H.; Liebeskind, L. S. Practical Organic Synthesis with Strained Ring Molecules. Rhodium Catalyzed Carbonylation of Cyclopropenecarboxylate Esters and Cyclopropenyl Ketones to.alpha.-Pyrones and of Vinylcyclopropenes to Phenols. J. Org. Chem. 1987, 52, 2631–2634. DOI: 10.1021/jo00388a064.
  • Padwa, A.; Kassir, J. M.; Xu, S. L. Cyclization Reactions of Rhodium Carbene Complexes. Effect of Composition and Oxidation State of the Metal †. J. Org. Chem. 1997, 62, 1642–1652. DOI: 10.1021/jo962271r.
  • Muller, P.; Granicher, C. Structural Effects on the RhII‐Catalyzed Rearrangement of Cyclopropenes. Helv. Chim. Acta 1993, 76, 521–534.
  • Muller, P.; Granicher, C. Selectivity in Rhodium(II)‐Catalyzed Rearrangements of cycloprop‐2‐ene‐1‐carboxylates. Helv. Chim. Acta 1995, 78, 129–144.
  • Kaur, N. Ionic Liquids: A Versatile Medium for the Synthesis of Six-Membered two Nitrogen Containing Heterocycles. Curr. Org. Chem. 2019, 23, 76-96. (b) Kaur, N.; Grewal, P.; Bhardwaj, P.; Devi, M.; Ahlawat, N.; Verma, Y. Synthesis of Five-Membered N-Heterocycles using Silver metal. Synth. Commun. 2020, 49, 3058–3100.
  • Davies, H. M. L.; Romines, K. R. Direct Synthesis of Furans by 3 + 2 Cycloadditions between Rhodium(II) Acetate Stabilized Carbenoids and Acetylenes. Tetrahedron 1988, 44, 3343–3348. DOI: 10.1016/S0040-4020(01)85968-8.
  • Padwa, A.; Kassir, J. M.; Xu, S. L. Rhodium-Catalyzed Ring-Opening Reaction of Cyclopropenes. Control of Regioselectivity by the Oxidation State of the Metal. J. Org. Chem. 1991, 56, 6971–6972. DOI: 10.1021/jo00025a005.
  • Rubin, M.; Rubina, M.; Gevorgyan, V. Transition Metal Chemistry of Cyclopropenes and Cyclopropanes. Chem. Rev. 2007, 107, 3117–3179. DOI: 10.1021/cr050988l.
  • Rubin, M.; Rubina, M.; Gevorgyan, V. Recent Advances in Cyclopropene Chemistry. Synthesis 2006, 2006, 1221–1245. DOI: 10.1055/s-2006-926404.
  • Fox, J. M.; Yan, N. Metal Mediated and Catalyzed Nucleophilic Additions to Cyclopropenes. Coc. 2005, 9, 719–732. DOI: 10.2174/1385272053765006.
  • Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Rh-Catalyzed Transannulation of Pyridotriazoles with Alkynes and Nitriles. Angew. Chem. Int. Ed. Engl. 2007, 46, 4757–4759. DOI: 10.1002/anie.200700804.
  • Davies, H. M. L.; Townsend, R. J. Catalytic Asymmetric Cyclopropanation of Heteroaryldiazoacetates. J. Org. Chem. 2001, 66, 6595–6603. DOI: 10.1021/jo015617t.
  • Yu, R. T.; Lee, E. E.; Malik, G.; Rovis, T. Total Synthesis of Indolizidine Alkaloid (-)-209D: overriding Substrate Bias in the Asymmetric Rhodium-Catalyzed [2 + 2+2] Cycloaddition. Angew. Chem. Int. Ed. Engl. 2009, 48, 2379–2382. DOI: 10.1002/anie.200805455.
  • Oinen, M. E.; Yu, R. T.; Rovis, T. Excess Substrate is a Spectator Ligand in a Rhodium-Catalyzed Asymmetric [2 + 2 + 2] Cycloaddition of Alkenyl Isocyanates with Tolanes. Org. Lett. 2009, 11, 4934–4937. DOI: 10.1021/ol9020805.
  • Yu, R. T.; Rovis, T. Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition of Alkenyl Isocyanates and Alkynes. J. Am. Chem. Soc. 2006, 128, 2782–2783. DOI: 10.1021/ja057803c.
  • Chiou, W.-H.; Lin, G.-H.; Hsu, C.-C.; Chaterpaul, S. J.; Ojima, I. Efficient Syntheses of Crispine a and Harmicine by RH-Catalyzed Cyclohydrocarbonylation. Org. Lett. 2009, 11, 2659–2662. DOI: 10.1021/ol900702t.
  • Tahirovic, Y. A.; Geballe, M.; Gruszecka-Kowalik, Ewa; Myers, S. J.; Lyuboslavsky, P.; Le, P.; French, A.; Irier, H.; Choi, W-b.; Easterling, K.; Yuan, H.; et al. Enantiomeric Propanolamines as Selective N-methyl-D-Aspartate 2B Receptor Antagonists. J. Med. Chem. 2008, 51, 5506–5521., DOI: 10.1021/jm8002153.
  • Friedman, R. K.; Oberg, K. M.; Dalton, D. M.; Rovis, T. Phosphoramidite-Rhodium Complexes as Catalysts for the Asymmetric [2 + 2+2] Cycloaddition of Alkenyl Isocyanates and Alkynes. Pure Appl. Chem. 2009, 82, 1353–1364. DOI: 10.1351/PAC-CON-09-12-09.
  • Lee, E. E.; Rovis, T. Enantioselective Synthesis of Indolizidines Bearing Quaternary Substituted Stereocenters via Rhodium-Catalyzed [2 + 2+2] Cycloaddition of Alkenyl Isocyanates and Terminal Alkynes. Org. Lett. 2008, 10, 1231–1234. DOI: 10.1021/ol800086s.
  • Keller Friedman, R.; Rovis, T. Predictable and Regioselective Insertion of Internal Unsymmetrical Alkynes in Rhodium-Catalyzed Cycloadditions with Alkenyl Isocyanates. J. Am. Chem. Soc. 2009, 131, 10775–10782. DOI: 10.1021/ja903899c.
  • Mayr, H.; Ofial, A. R. Do General Nucleophilicity Scales Exist? J. Phys. Org. Chem. 2008, 21, 584–595. DOI: 10.1002/poc.1325.
  • Mayr, H.; Kempf, B.; Ofial, A. R. π-Nucleophilicity in Carbon − Carbon Bond-Forming Reactions. Acc. Chem. Res. 2003, 36, 66–77. DOI: 10.1021/ar020094c.
  • Yu, R. T.; Rovis, T. Asymmetric Synthesis of Bicyclic Amidines via Rhodium-Catalyzed [2 + 2+2] Cycloaddition of Carbodiimides. J. Am. Chem. Soc. 2008, 130, 3262–3263. DOI: 10.1021/ja710065h.
  • Kim, G. C.; Chu-Moyer, M. Y.; Danishefsky, S. J.; Schulte, G. K. The Total Synthesis of Indolizomycin. J. Am. Chem. Soc. 1993, 115, 30–39. DOI: 10.1021/ja00054a005.
  • Airiau, E.; Spangenberg, T.; Girard, N.; Schoenfelder, A.; Salvadori, J.; Taddei, M.; Mann, A. A General Approach to aza-Heterocycles by Means of Domino Sequences Driven by Hydroformylation. Chemistry 2008, 14, 10938–10948. DOI: 10.1002/chem.200801795.
  • Bates, R. W.; Lim, C. J. Synthesis of Two Nuphar Alkaloids by Allenic Hydroxylamine Cyclisation. Synlett 2010, 2010, 866–868. DOI: 10.1055/s-0029-1219554.
  • Chiou, W.-H.; Mizutani, N.; Ojima, I. Highly Efficient Synthesis of Azabicyclo[x.y.0]Alkane Amino Acids and Congeners by Means of Rh-Catalyzed Cyclohydrocarbonylation. J. Org. Chem. 2007, 72, 1871–1882. DOI: 10.1021/jo061692y.
  • Campi, E.; Habsuda, J.; Jackson, W.; Jonasson, C.; Mccubbin, Q. The Stereochemistry of Organometallic Compounds. XLII. The Preparation of [2,1-b]Quinazolines Involving Rhodium-Catalysed Hydroformylation of 2-Amino-N-Alkenylbenzylamines. Aust. J. Chem. 1995, 48, 2023. DOI: 10.1071/CH9952023.
  • Lerchner, A.; Carreira, E. M. First Total Synthesis of (+/-)-Strychnofoline via a Highly Selective Ring-Expansion Reaction. J. Am. Chem. Soc. 2002, 124, 14826–14827. DOI: 10.1021/ja027906k.
  • Fischer, C.; Meyers, C.; Carreira, E. M. Efficient Synthesis of (±)‐Horsfiline through the MgI2‐Catalyzed Ring‐Expansion Reaction of a Spiro[cyclopropane‐1,3′‐indol]‐2′‐one. Helvetica Chimica Acta 2000, 83, 1175–1181.
  • Carreira, E. M.; Meyers, C. Total Synthesis of (-)-Spirotryprostatin B. Angew. Chem. Int. Ed. Engl. 2003, 42, 694–696. DOI: 10.1002/anie.200390192.
  • Singh, G. S.; Desta, Z. Y. Isatins as Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks. Chem. Rev. 2012, 112, 6104–6155. DOI: 10.1021/cr300135y.
  • Michael, J. P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2007, 24, 223–246. DOI: 10.1039/b509528j.
  • Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Palladium-Catalyzed Arylation of Azole Compounds with Aryl Halides in the Presence of Alkali Metal Carbonates and the Use of Copper Iodide in the Reaction. Bcsj. 1998, 71, 467–473. DOI: 10.1246/bcsj.71.467.
  • Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation. Acc. Chem. Res. 2008, 41, 1013–1025. DOI: 10.1021/ar800042p.
  • Yu, R. T.; Keller Friedman, R.; Rovis, T. Enantioselective Rhodium-Catalyzed [4 + 2+2] Cycloaddition of Dienyl Isocyanates for the Synthesis of Bicyclic Azocine Rings. J. Am. Chem. Soc. 2009, 131, 13250–13251. DOI: 10.1021/ja906641d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.