356
Views
15
CrossRef citations to date
0
Altmetric
Articles

Two-dimensional nanosheets functionalized water-borne polyurethane nanocomposites with improved mechanical and anti-corrosion properties

, ORCID Icon, , , , & show all
Pages 1358-1366 | Received 17 Jan 2020, Accepted 10 Mar 2020, Published online: 07 Apr 2020

References

  • Jung, D. H.; Jeong, M. A.; Jeong, H. M.; Kim, B. K. Chemical Hybridization of Imidized Waterborne Polyurethane with Silica Particle. Colloid Polym. Sci. 2010, 288, 1465–1470. DOI: 10.1007/s00396-010-2279-6.
  • Kale, M. B.; Luo, Z.; Zhang, X.; Dhamodharan, D.; Divakaran, N.; Mubarak, S.; Wu, L.; Xu, Y. Waterborne Polyurethane Nanocomposite Reinforced with Amine Intercalated α-Zirconium Phosphate - Study of Thermal and Mechanical Properties. Polymer 2019, 170, 43–53. DOI: 10.1016/j.polymer.2019.122008.
  • Xu, Y. D.; Yang, Y. Q.; Yan, D. X.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q. Flexible and Conductive Polyurethane Composites for Electromagnetic Shielding and Printable Circuit. Chem. Eng. J. 2019, 360, 1427–1436. DOI: 10.1016/j.cej.2018.10.235.
  • Wang, C. S.; Ding, L.; Wu, Q. S.; Liu, F.; Wei, J.; Lu, R.; Xie, H. F.; Cheng, R. S. High Strength Cellulose/ATT Composite Films with Good Oxygen Barrier Property for Sustainable Packaging Applications. Ind. Crops Prod. 2014, 57, 29–34.
  • Wu, G. M.; Liu, D.; Chen, J.; Liu, G. F.; Kong, Z. W. Preparation and Properties of Super Hydrophobic Films from Siloxane Modified Two-Component Waterborne Polyurethane and Hydrophobic Nano SiO2. Prog. Org. Coat. 2019, 127, 80–87. DOI: 10.1016/j.porgcoat.2018.06.016.
  • Gao, X.; Zhu, Y.; Zhou, S.; Gao, W.; Wang, Z.; Zhou, B. Preparation and Characterization of Well-Dispersed Waterborne Polyurethane/CaCO3 Nanocomposites (2011) Colloids and Surfaces A. Physicochem. Eng. Aspects 2011, 377, 312–317. DOI: 10.1016/j.colsurfa.2011.01.025.
  • Fan, W. H.; Du, W. N.; Li, Z. J.; Dan, N. H.; Huang, J. Abrasion Resistance of Waterborne Polyurethane Films Incorporated with PU/Silica Hybrids. Prog. Org. Coat. 2015, 86, 125–133. DOI: 10.1016/j.porgcoat.2015.04.022.
  • Wei, Y.; Chen, S.; Li, F.; Liu, K.; Li, L. Hybrids of Silver Nanowires and Silica Nanoparticles as Morphology Controlled Conductive Filler Applied in Flexible Conductive Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015, 73, 195–203. DOI: 10.1016/j.compositesa.2015.03.003.
  • Gurunathan, T.; Chung, J. S. Synthesis of Aminosilane Cross-Linked Cationomeric Waterborne Polyurethane Nanocomposites and Its Physicochemical Properties Colloids and Surfaces A. Physicochem. Eng. Aspects 2017, 522, 124–132. DOI: 10.1016/j.colsurfa.2017.02.061.
  • Ruanpan, S.; Manuspiya, H. Synthesized Amino-Functionalized Porous Clay Heterostructure as an Effective Thickener in Waterborne Polyurethane Hybrid Adhesives for Lamination Processes. Int. J. Adhes. Adhes. 2018, 80, 66–75. DOI: 10.1016/j.ijadhadh.2017.10.005.
  • Pan, H. X.; Chen, D. J. Preparation and Characterization of Waterborne Polyurethane/Attapulgite Nanocomposites. Eur. Polym. J. 2007, 43, 3766–3772. DOI: 10.1016/j.eurpolymj.2007.06.031.
  • Yeh, J. M.; Yao, C. T.; Hsieh, C. F.; Lin, L. H.; Chen, P. L.; Wu, J. C.; Yang, H. C.; Wu, C. P. Preparation, Characterization and Electrochemical Corrosion Studies on Environmentally Friendly Waterborne Polyurethane/Na+-MMT Clay Nanocomposite Coatings. Eur. Polym. J. 2008, 44, 3046–3056. DOI: 10.1016/j.eurpolymj.2008.05.037.
  • Zeng, Z. H.; Chen, M. J.; Jin, H.; Li, W. W.; Xue, X.; Zhou, L. C.; Pei, Y. M.; Zhang, H.; Zhang, H. Thin and Flexible Multi-Walled Carbon Nanotube/Waterborne Polyurethane Composites with High-Performance Electromagnetic Interference Shielding. Carbon 2016, 96, 768–777. DOI: 10.1016/j.carbon.2015.10.004.
  • Ma, X. Y.; Zhang, W. D. Effects of Flower-Like ZnO Nanowhiskers on the Mechanical, Thermal and Antibacterial Properties of Waterborne Polyurethane. Polym. Degrad. Stabil. 2009, 94, 1103–1109. DOI: 10.1016/j.polymdegradstab.2009.03.024.
  • Lin, S. C.; Ma, C. M.; Hsiao, S. T.; Wang, Y. S.; Yang, C. Y.; Liao, W. H.; Li, S. M.; Wang, J. A.; Cheng, T. Y.; Lin, C. W.; Yang, R. B. Electromagnetic Interference Shielding Performance of Waterborne Polyurethane Composites Filled with Silver Nanoparticles Deposited on Functionalized Graphene. Appl. Surf. Sci. 2016, 385, 436–444. DOI: 10.1016/j.apsusc.2016.05.063.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-Polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39, 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Wang, M.; Liu, X.; Song, P. P.; Wang, X. L.; Xu, F.; Zhang, X. M. Transformation of Lignosulfonate into Graphene-Like 2D Nanosheets: Self-Assembly Mechanism and Their Potential in Biomedical and Electrical Applications. Int. J. Biol. Macromol. 2019, 128, 621–628. DOI: 10.1016/j.ijbiomac.2019.01.167.
  • Li, L. H.; Chen, Y.; Stachurski, Z. H. Boron Nitride Nanotube Reinforced Polyurethane Composites. Prog. Nat. Sci. 2013, 23, 170–173. DOI: 10.1016/j.pnsc.2013.03.004.
  • Tong, Y.; Bohm, S.; Song, M. The Capability of Graphene on Improving the Electrical Conductivity and Anti-Corrosion Properties of Polyurethane Coatings. Appl. Surf. Sci. 2017, 424, 72–81. DOI: 10.1016/j.apsusc.2017.02.081.
  • Wu, Y. H.; Zhu, X. Y.; Zhao, W. J.; Wang, Y. J.; Wang, C. T.; Xue, Q. J. Corrosion Mechanism of Graphene Coating with Different Defect Levels. J. Alloy. Compd. 2019, 777, 135–144. DOI: 10.1016/j.jallcom.2018.10.260.
  • Mohammadi, A.; Barikani, M.; Doctorsafaei, A. H.; Isfahani, A. P.; Shams, E.; Ghalei, B. Aqueous Dispersion of Polyurethane Nanocomposites Based on Calix [4] Arenes Modified Graphene Oxide Nanosheets: Preparation, Characterization, and Anti-Corrosion Properties. Chem. Eng. J. 2018, 349, 466–480. DOI: 10.1016/j.cej.2018.05.111.
  • Li, J.; Cui, J. C.; Yang, J. Y.; Li, Y. Y.; Qiu, H. X.; Yang, J. H. Reinforcement of Graphene and Its Derivatives on the Anticorrosive Properties of Waterborne Polyurethane Coatings. Compos. Sci. Technol. 2016, 129, 30–37. DOI: 10.1016/j.compscitech.2016.04.017.
  • Christopher, G.; Kulandainathan, M. A.; Harichandran, G. Comparative Study of Effect of Corrosion on Mild Steel with Waterborne Polyurethane Dispersion Containing Graphene Oxide versus Carbon Black Nanocomposites. Prog. Org. Coat. 2015, 89, 199–211. DOI: 10.1016/j.porgcoat.2015.09.022.
  • Fang, H. M.; Bai, S. L.; Wong, C. P. White Graphene” – Hexagonal Boron Nitride Based Polymeric Composites and Their Application in Thermal Management. Compos. Commun. 2016, 2, 19–24. DOI: 10.1016/j.coco.2016.10.002.
  • Asaldoust, S.; Ramezanzadeh, B. Synthesis and Characterization of a High-Quality Nanocontainer Based on Benzimidazole-Zinc Phosphate (ZP-BIM) Tailored Graphene Oxides; A Facile Approach to Fabricating a Smart Self-Healing Anti-Corrosion System. J. Colloid Interface Sci. 2020, 564, 230–244. DOI: 10.1016/j.jcis.2019.12.122.
  • Javidparvar, A. A.; Naderi, R.; Ramezanzadeh, B. L-Cysteine Reduced/Functionalized Graphene Oxide Application as a Smart/Control Release Nanocarrier of Sustainable Cerium Ions for Epoxy Coating Anti-Corrosion Properties Improvement. J. Hazard. Mater. 2020, 389, 122135. DOI: 10.1016/j.jhazmat.2020.122135.
  • Taheri, N. N.; Ramezanzadeh, B.; Mahdavian, M. Application of Layer-by-Layer Assembled Graphene Oxide Nanosheets/Polyaniline/Zinc Cations for Construction of an Effective Epoxy Coating Anti-Corrosion System. J. Alloy. Compd. 2019, 800, 532–549. DOI: 10.1016/j.jallcom.2019.06.103.
  • Mohammadkhani, R.; Ramezanzadeh, M.; Saadatmandi, S.; Ramezanzadeh, B. Designing a Dual-Functional Epoxy Composite System with Self-Healing/Barrier Anti-Corrosion Performance Using Graphene Oxide Nano-Scale Platforms Decorated with Zinc Doped-Conductive Polypyrrole Nanoparticles with Great Environmental Stability and Non-Toxicity. Chem. Eng. J. 2020, 382, 122819. DOI: 10.1016/j.cej.2019.122819.
  • Akbarzadeh, S.; Ramezanzadeh, M.; Ramezanzadeh, B.; Bahlakeh, G. A Green Assisted Route for the Fabrication of a High-Efficiency Self-Healing Anti-Corrosion Coating through Graphene Oxide Nanoplatform Reduction by Tamarindus indiaca Extract. J. Hazard. Mater. 2020, 390, 122147. DOI: 10.1016/j.jhazmat.2020.122147.
  • Ramezanzadeh, M.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. Development of Metal-Organic Framework (MOF) Decorated Graphene Oxide Nanoplatforms for Anti-Corrosion Epoxy Coatings. Carbon 2020, 161, 231–251. DOI: 10.1016/j.carbon.2020.01.082.
  • Kasaeian, M.; Ghasemi, E.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. A Combined Experimental and Electronic-Structure Quantum Mechanics Approach for Studying the Kinetics and Adsorption Characteristics of Zinc Nitrate Hexahydrate Corrosion Inhibitor on the Graphene Oxide Nanosheets. Appl. Surf. Sci. 2018, 462, 963–979. DOI: 10.1016/j.apsusc.2018.08.054.
  • Samiee, R.; Ramezanzadeh, B.; Mahdavian, M.; Alibakhshi, E.; Bahlakeh, G. Graphene Oxide Nano-Sheets Loading with Praseodymium Cations: Adsorption-Desorption Study, Quantum Mechanics Calculations and Dual Active-Barrier Effect for Smart Coatings Fabrication. J. Ind. Eng. Chem. 2019, 78, 143–154. DOI: 10.1016/j.jiec.2019.06.024.
  • Motamedi, M.; Ramezanzadeh, M.; Ramezanzadeh, B.; Saadatmandi, S. Enhancement of the Active/Passive Anti-Corrosion Properties of Epoxy Coating via Inclusion of Histamine/Zinc Modified/Reduced Graphene Oxide Nanosheets. Appl. Surf. Sci. 2019, 488, 77–91. DOI: 10.1016/j.apsusc.2019.05.180.
  • Li, L. H.; Chen, Y. Atomically Thin Boron Nitride: Unique Properties and Applications. Adv. Funct. Mater. 2016, 26, 2594–2608. DOI: 10.1002/adfm.201504606.
  • Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano 2014, 8, 1457–1462. DOI: 10.1021/nn500059s.
  • Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H. High Thermal Conductivity of High-Quality Monolayer Boron Nitride and Its Thermal Expansion. Sci. Adv. 2019, 5, eaav0129. DOI: 10.1126/sciadv.aav0129.
  • Wan, S.; Hu, H.; Peng, J.; Li, Y.; Fan, Y.; Jiang, L.; Cheng, Q. Nacre-Inspired Integrated Strong and Tough Reduced Graphene Oxide–Poly(Acrylic Acid) Nanocomposites. Nanoscale 2016, 8, 5649–5656. DOI: 10.1039/C6NR00562D.
  • Kumar, R.; Parashar, A. Effect of Geometrical Defects and Functionalization on the Interfacial Strength of h-BN/Polyethylene Based Nanocomposite. Polymer 2018, 146, 82–90. DOI: 10.1016/j.polymer.2018.05.041.
  • Li, L. H.; Xing, T.; Chen, Y.; Jones, R. Nanosheets: Boron Nitride Nanosheets for Metal Protection. Adv. Mater. Interfaces 2014, 1, 1300132. DOI: 10.1002/admi.201300132.
  • Yu, J. J.; Zhao, W. J.; Wu, Y. H.; Wang, D. L.; Feng, R. T. Tribological Properties of Epoxy Composite Coatings Reinforced with Functionalized C-BN and H-BN Nanofillers. Appl. Surf. Sci. 2018, 434, 1311–1320. DOI: 10.1016/j.apsusc.2017.11.204.
  • Li, X. Y.; Deng, H.; Li, Z.; Xiu, H.; Qi, X. D.; Zhang, Q.; Wang, K.; Chen, F.; Fu, Q. Graphene/Thermoplastic Polyurethane Nanocomposites: Surface Modification of Graphene through Oxidation, Polyvinyl Pyrrolidone Coating and Reduction. Compos. Part A Appl. Sci. Manuf. 2015, 68, 264–275. DOI: 10.1016/j.compositesa.2014.10.016.
  • Qiang, T. T.; Han, M. M.; Li, X. N. Synthesis, Characterization and Fluorescence Performance of a Novel SAF-Based Waterborne Polyurethane. Prog. Org. Coat. 2018, 122, 248–254. DOI: 10.1016/j.porgcoat.2018.05.030.
  • Cui, M. J.; Ren, S. M.; Qin, S. L.; Xue, Q. J.; Zhao, H. C.; Wang, L. P. Processable Poly(2-Butylaniline)/Hexagonal Boron Nitride Nanohybrids for Synergetic Anticorrosive Reinforcement of Epoxy Coating. Corros. Sci. 2018, 131, 187–198. DOI: 10.1016/j.corsci.2017.11.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.