176
Views
2
CrossRef citations to date
0
Altmetric
Article

Synthesis of green and ecofriendly iron nanoparticles using plant part extracts: application on the removal of phosphorus from aqueous media

&
Pages 340-351 | Received 29 Feb 2020, Accepted 07 Jun 2020, Published online: 07 Jul 2020

References

  • Almeelbi, T.; Bezbaruah, A. Aqueous Phosphate Removal Using Nanoscale Zero-Valent Iron. J. Nanopart. Res. 2012, 14, 1–14. DOI: 10.1007/s11051-012-0900-y.
  • Yoon, S.-Y.; Lee, C.-G.; Park, J.-A.; Kim, J.-H.; Kim, S.-B.; Lee, S.-H.; Choi, J.-W. Kinetic, Equilibrium and Thermodynamic Studies for Phosphate Adsorption to Magnetic Iron Oxide Nanoparticles. Chem. Eng. J. 2014, 236, 341–347. DOI: 10.1016/j.cej.2013.09.053.
  • Xu, H.; Paerl, H. W.; Qin, B.; Zhu, G.; Gao, G. Nitrogen and Phosphorus Inputs Control Phytoplankton Growth in Eutrophic Lake Taihu. Limnol. Oceanogr. 2010, 55, 420–432. DOI: 10.4319/lo.2010.55.1.0420.
  • Liu, H.; Chen, T.; Zou, X.; Xie, Q.; Qing, C.; Chen, D.; Frost, R. L. Removal of Phosphorus Using NZVI Derived from Reducing Natural Goethite. Chem. Eng. J. 2013, 234, 80–87. DOI: 10.1016/j.cej.2013.08.061.
  • Wu, D.; Shen, Y.; Ding, A.; Qiu, M.; Yang, Q.; Zheng, S. Phosphate Removal from Aqueous Solutions by Nanoscale Zero-Valent Iron. Environ. Technol. 2013, 34, 2663–2669. DOI: 10.1080/09593330.2013.786103.
  • Lǚ, J.; Liu, H.; Liu, R.; Zhao, X.; Sun, L.; Qu, J. Adsorptive Removal of Phosphate by a Nanostructured Fe–Al–Mn Trimetal Oxide Adsorbent. Powder Technol. 2013, 233, 146–154. DOI: 10.1016/j.powtec.2012.08.024.
  • Wen, Z.; Zhang, Y.; Dai, C. Removal of Phosphate from Aqueous Solution Using Nanoscale Zerovalent Iron (nZVI). Colloids Surf, A 2014, 457, 433–440. DOI: 10.1016/j.colsurfa.2014.06.017.
  • Soliemanzadeh, A.; Fekri, M. Synthesis of Clay-Supported Nanoscale Zero-Valent Iron Using Green Tea Extract for the Removal of Phosphorus from Aqueous Solutions. Chin. J. Chem. Eng. 2017, 25, 924–930. DOI: 10.1016/j.cjche.2016.12.006.
  • Eljamal, O.; Shubair, T.; Tahara, A.; Sugihara, Y.; Matsunaga, N. Iron Based Nanoparticles-Zeolite Composites for the Removal of Cesium from Aqueous Solutions. J. Mol. Liq. 2019, 277, 613–623. DOI: 10.1016/j.molliq.2018.12.115.
  • Li, S.; Cooke, R. A.; Wang, L.; Ma, F.; Bhattarai, R. Characterization of Fly Ash Ceramic Pellet for Phosphorus Removal. J. Environ. Manage. 2017, 189, 67–74. DOI: 10.1016/j.jenvman.2016.12.042.
  • Sleiman, N.; Deluchat, V.; Wazne, M.; Mallet, M.; Courtin-Nomade, A.; Kazpard, V.; Baudu, M. Phosphate Removal from Aqueous Solutions Using Zero Valent Iron (ZVI): Influence of Solution Composition and ZVI Aging. Colloids Surf, A 2017, 514, 1–10. DOI: 10.1016/j.colsurfa.2016.11.014.
  • Eljamal, O.; Sasaki, K.; Hirajima, T. Sorption Kinetic of Arsenate as Water Contaminant on Zero Valent Iron. J. Water Resource Prot. 2013, 5, 563–567. DOI: 10.4236/jwarp.2013.56057.
  • Takami, S.; Eljamal, O.; Khalil, A. M.; Eljamal, R.; Matsunaga, N. Development of Continuous System Based on Nanoscale Zero Valent Iron Particles for Phosphorus Removal. J. JSCE 2019, 7, 30–42. DOI: 10.2208/journalofjsce.7.1_30.
  • Boparai, H. K.; Joseph, M.; O'Carroll, D. M. Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles. J. Hazard. Mater. 2011, 186, 458–465. DOI: 10.1016/j.jhazmat.2010.11.029.
  • Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesis of Fe Nanoparticles Using Eucalyptus Leaf Extracts for Treatment of Eutrophic Wastewater. Sci. Total Environ. 2014, 466-467, 210–213. DOI: 10.1016/j.scitotenv.2013.07.022.
  • Machado, S.; Stawiński, W.; Slonina, P.; Pinto, A.; Grosso, J.; Nouws, H.; Albergaria, J. T.; Delerue-Matos, C. Application of Green Zero-Valent Iron Nanoparticles to the Remediation of Soils Contaminated with Ibuprofen. Sci. Total Environ. 2013, 461–462, 323–329. DOI: 10.1016/j.scitotenv.2013.05.016.
  • Shahwan, T.; Sirriah, S. A.; Nairat, M.; Boyacı, E.; Eroğlu, A. E.; Scott, T. B.; Hallam, K. R. Green Synthesis of Iron Nanoparticles and Their Application as a Fenton-like Catalyst for the Degradation of Aqueous Cationic and Anionic Dyes. Chem. Eng. J. 2011, 172, 258–266. DOI: 10.1016/j.cej.2011.05.103.
  • Kuang, Y.; Wang, Q.; Chen, Z.; Megharaj, M.; Naidu, R. Heterogeneous Fenton-like Oxidation of Monochlorobenzene Using Green Synthesis of Iron Nanoparticles. J. Colloid Interface Sci. 2013, 410, 67–73. DOI: 10.1016/j.jcis.2013.08.020.
  • Zhuang, Z.; Huang, L.; Wang, F.; Chen, Z. Effects of Cyclodextrin on the Morphology and Reactivity of Iron-Based Nanoparticles Using Eucalyptus Leaf Extract. Ind. Crops Prod. 2015, 69, 308–313. DOI: 10.1016/j.indcrop.2015.02.027.
  • Abbassi, R.; Yadav, A. K.; Kumar, N.; Huang, S.; Jaffe, P. R. Modeling and Optimization of Dye Removal Using “Green” Clay Supported Iron Nano-Particles. Ecol. Eng. 2013, 61, 366–370. DOI: 10.1016/j.ecoleng.2013.09.040.
  • Huang, L.; Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesized Conditions Impacting on the Reactivity of Fe NPs for the Degradation of Malachite Green. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 154–159. DOI: 10.1016/j.saa.2014.08.116.
  • Madhavi, V.; Prasad, T.; Reddy, A. V. B.; Reddy, B. R.; Madhavi, G. Application of Phytogenic Zerovalent Iron Nanoparticles in the Adsorption of Hexavalent Chromium. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 116, 17–25. DOI: 10.1016/j.saa.2013.06.045.
  • Makarov, V. V.; Makarova, S. S.; Love, A. J.; Sinitsyna, O. V.; Dudnik, A. O.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O. Biosynthesis of Stable Iron Oxide Nanoparticles in Aqueous Extracts of Hordeum Vulgare and Rumex Acetosa Plants. Langmuir 2014, 30, 5982–5988. DOI: 10.1021/la5011924.
  • Akbari, V.; Jamei, R.; Heidari, R.; Esfahlan, A. J. Antiradical Activity of Different Parts of Walnut (Juglans regia L.) Fruit as a Function of Genotype. Food Chem. 2012, 135, 2404–2410. DOI: 10.1016/j.foodchem.2012.07.030.
  • Fernández-Agulló, A.; Pereira, E.; Freire, M. S.; Valentão, P.; Andrade, P. B.; González-Álvarez, J.; Pereira, J. A. Influence of Solvent on the Antioxidant and Antimicrobial Properties of Walnut (Juglans regia L.) Green Husk Extracts. Ind. Crops Prod. 2013, 42, 126–132. DOI: 10.1016/j.indcrop.2012.05.021.
  • Soliemanzadeh, A.; Fekri, M. The Application of Green Tea Extract to Prepare Bentonite-Supported Nanoscale Zero-Valent Iron and Its Performance on Removal of Cr (VI): Effect of Relative Parameters and Soil Experiments. Microporous Mesoporous Mater. 2017, 239, 60–69. DOI: 10.1016/j.micromeso.2016.09.050.
  • Poguberović, S. S.; Krčmar, D. M.; Maletić, S. P.; Kónya, Z.; Pilipović, D. D. T.; Kerkez, D. V.; Rončević, S. D. Removal of as (III) and Cr (VI) from Aqueous Solutions Using “Green” Zero-Valent Iron Nanoparticles Produced by Oak, Mulberry and Cherry Leaf Extracts. Ecol. Eng. 2016, 90, 42–49. DOI: 10.1016/j.ecoleng.2016.01.083.
  • Weng, X.; Jin, X.; Lin, J.; Naidu, R.; Chen, Z. Removal of Mixed Contaminants Cr (VI) and Cu (II) by Green Synthesized Iron Based Nanoparticles. Ecol. Eng. 2016, 97, 32–39. DOI: 10.1016/j.ecoleng.2016.08.003.
  • Devatha, C.; Thalla, A. K.; Katte, S. Y. Green Synthesis of Iron Nanoparticles Using Different Leaf Extracts for Treatment of Domestic Waste Water. J. Cleaner Prod. 2016, 139, 1425–1435. DOI: 10.1016/j.jclepro.2016.09.019.
  • Wang, Z.; Fang, C.; Megharaj, M. Characterization of Iron–Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustainable Chem. Eng. 2014, 2, 1022–1025. DOI: 10.1021/sc500021n.
  • Gao, J.-F.; Li, H.-Y.; Pan, K.-L.; Si, C.-Y. Green Synthesis of Nanoscale Zero-Valent Iron Using a Grape Seed Extract as a Stabilizing Agent and the Application for Quick Decolorization of Azo and Anthraquinone Dyes. RSC Adv. 2016, 6, 22526–22537. DOI: 10.1039/C5RA26668H.
  • Truskewycz, A.; Shukla, R.; Ball, A. S. Iron Nanoparticles Synthesized Using Green Tea Extracts for the Fenton-like Degradation of Concentrated Dye Mixtures at Elevated Temperatures. J. Environ. Chem. Eng. 2016, 4, 4409–4417. DOI: 10.1016/j.jece.2016.10.008.
  • Nadagouda, M. N.; Castle, A. B.; Murdock, R. C.; Hussain, S. M.; Varma, R. S. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized Using Tea Polyphenols. Green Chem. 2010, 12, 114–122. DOI: 10.1039/B921203P.
  • Rice, E. W.; Bridgewater, L, Association, A. P. H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, 2012.
  • Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of Iron-Based Nanoparticles Using Oolong Tea Extract for the Degradation of Malachite Green. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 117, 801–804. DOI: 10.1016/j.saa.2013.09.054.
  • Khalil, A. M. Treatment and Regeneration of Nano-Scale Zero-Valent Iron Spent in Water Remediation. Evergreen 2017,4, 21-28. doi: 10.5109/1808449.
  • Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesis of Iron Nanoparticles by Various Tea Extracts: Comparative Study of the Reactivity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 130, 295–301. DOI: 10.1016/j.saa.2014.04.037.
  • Soliemanzadeh, A.; Fekri, M.; Bakhtiary, S.; Mehrizi, M. H. Biosynthesis of Iron Nanoparticles and Their Application in Removing Phosphorus from Aqueous Solutions. Chem. Ecol. 2016, 32, 286–300. DOI: 10.1080/02757540.2016.1139091.
  • Gu, W.; Xie, Q.; Qi, C.; Zhao, L.; Wu, D. Phosphate Removal Using Zinc Ferrite Synthesized through a Facile Solvothermal Technique. Powder Technol. 2016, 301, 723–729. DOI: 10.1016/j.powtec.2016.07.015.
  • Sun, Y.; Afanasiev, P.; Vrinat, M.; Coudurier, G. Porous Zirconium Phosphates Prepared by Surfactant-Assisted Precipitation. J. Mater. Chem. 2000, 10, 2320–2324. DOI: 10.1039/b004845n.
  • Wang, T.; Lin, J.; Chen, Z.; Megharaj, M.; Naidu, R. Green Synthesized Iron Nanoparticles by Green Tea and Eucalyptus Leaves Extracts Used for Removal of Nitrate in Aqueous Solution. J. Cleaner Prod. 2014, 83, 413–419. DOI: 10.1016/j.jclepro.2014.07.006.
  • Eljamal, R.; Eljamal, O.; Khalil, A. M.; Saha, B. B.; Matsunaga, N. Improvement of the Chemical Synthesis Efficiency of Nano-Scale Zero-Valent Iron Particles. J. Environ. Chem. Eng. 2018, 6, 4727–4735. DOI: 10.1016/j.jece.2018.06.069.
  • Liu, X.; Zhang, L. Removal of Phosphate Anions Using the Modified Chitosan Beads: Adsorption Kinetic, Isotherm and Mechanism Studies. Powder Technol. 2015, 277, 112–119. DOI: 10.1016/j.powtec.2015.02.055.
  • Xie, J.; Lin, Y.; Li, C.; Wu, D.; Kong, H. Removal and Recovery of Phosphate from Water by Activated Aluminum Oxide and Lanthanum Oxide. Powder Technol. 2015, 269, 351–357. DOI: 10.1016/j.powtec.2014.09.024.
  • Yan, L-g.; Xu, Y-y.; Yu, H.; Q.; Xin, X-d.; Wei, Q.; Du, B. Adsorption of Phosphate from Aqueous Solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites . J. Hazard. Mater. 2010, 179, 244–250. DOI: 10.1016/j.jhazmat.2010.02.086.
  • Wang, Z.; Nie, E.; Li, J.; Yang, M.; Zhao, Y.; Luo, X.; Zheng, Z. Equilibrium and Kinetics of Adsorption of Phosphate onto Iron-Doped Activated Carbon. Environ. Sci. Pollut. Res. Int. 2012, 19, 2908–2917. DOI: 10.1007/s11356-012-0799-y.
  • Mondal, P.; Majumder, C. B.; Mohanty, B. Effects of Adsorbent Dose, Its Particle Size and Initial Arsenic Concentration on the Removal of Arsenic, Iron and Manganese from Simulated Ground Water by Fe3+ Impregnated Activated Carbon. J. Hazard. Mater. 2008, 150, 695–702. DOI: 10.1016/j.jhazmat.2007.05.040.
  • Su, Y.; Cui, H.; Li, Q.; Gao, S.; Shang, J. K. Strong Adsorption of Phosphate by Amorphous Zirconium Oxide Nanoparticles. Water Res. 2013, 47, 5018–5026. DOI: 10.1016/j.watres.2013.05.044.
  • Li, G.; Gao, S.; Zhang, G.; Zhang, X. Enhanced Adsorption of Phosphate from Aqueous Solution by Nanostructured Iron (III)–Copper (II) Binary Oxides. Chem. Eng. J. 2014, 235, 124–131. DOI: 10.1016/j.cej.2013.09.021.
  • Khan, T. A.; Chaudhry, S. A.; Ali, I. Equilibrium Uptake, Isotherm and Kinetic Studies of Cd (II) Adsorption onto Iron Oxide Activated Red Mud from Aqueous Solution. J. Mol. Liq. 2015, 202, 165–175. DOI: 10.1016/j.molliq.2014.12.021.
  • Seki, Y.; Seyhan, S.; Yurdakoc, M. Removal of Boron from Aqueous Solution by Adsorption on Al2O3 based materials using full factorial design. J. Hazard. Mater. 2006, 138, 60–66. DOI: 10.1016/j.jhazmat.2006.05.033.
  • Xiong, J.; Mahmood, Q. Adsorptive Removal of Phosphate from Aqueous Media by Peat. Desalination 2010, 259, 59–64. DOI: 10.1016/j.desal.2010.04.035.
  • Ngah, W. W.; Endud, C.; Mayanar, R. Removal of Copper (II) Ions from Aqueous Solution onto Chitosan and Cross-Linked Chitosan Beads. React. Funct. Polym. 2002, 50, 181–190. DOI: 10.1016/S1381-5148(01)00113-4.
  • Ozdes, D.; Duran, C.; Senturk, H. B. Adsorptive Removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. J. Environ. Manage. 2011, 92, 3082–3090. DOI: 10.1016/j.jenvman.2011.07.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.