246
Views
3
CrossRef citations to date
0
Altmetric
Article

Ir-M (M = Sn, Ni & Cu) bimetallic nanoparticles as low-cost catalysts for oxidative degradation of orange IV azo dye

, &
Pages 366-373 | Received 29 Feb 2020, Accepted 07 Jun 2020, Published online: 10 Jul 2020

References

  • Byberg, R.; Cobb, J.; Martin, L. D.; Thompson, R. W.; Camesano, T. A.; Zahraa, O.; Pons, M. N. Comparison of Photocatalytic Degradation of Dyes in Relation to Their Structure. Environ. Sci. Pollut. Res. Int. 2013, 20, 3570–3581. DOI: 10.1007/s11356-013-1551-y.
  • Singh, S. A.; Madras, G. Photocatalytic Degradation with Combustion Synthesized WO3 and WO3TiO2 Mixed Oxides under UV and Visible Light. Sep. Purif. Technol. 2013, 105, 79–89. DOI: . DOI: 10.1016/j.seppur.2012.12.010.
  • Khatami, M.; Alijani, H. Q.; Iraj, S. Biosynthesis of Bimetallic and Core-Shell Nanoparticles: Their Biomedical Applications – A Review. IET Nanobiotechnol. 2018, 12, 879–887. DOI. DOI: 10.1049/iet-nbt.2017.0308.
  • Lang, Q.; Hengbo, Y.; Aili, W.; et al. Oxidation of 1,2-Propanediol to Carboxylic Acid Over Hydroxyapatite Nanorod-Supported Metallic Cu-0 Nanoparticles. J. Nanosci. Nanotechnol. 2020, 20, 1723–1731. DOI: 10.1166/jnn.2020.16985.
  • Wuping, X.; Hengbo, Y.; Zhipeng, L.; et al. Selective Oxidation of 1,2-Propanediol to Carboxylic Acids Catalyzed by Copper Nanoparticles. J. Nanosci. Nanotechnol. 2018, 18, 3362–3372. DOI: 10.1166/jnn.2018.14706.
  • Yonghai, F.; Hengbo, Y.; Aili, W.; et al. Selectively Catalytic Oxidation of 1,2-Propanediol to Lactic, Formic, and Acetic Acids Over Ag Nanoparticles Under Mild Reaction Conditions. J. Catal. 2015, 326, 26–37. DOI: 10.1016/j.jcat.2015.03.009.
  • Yu, L.; Shi, Y.; Zhao, Z.; Yin, H.; Wei, Y.; Liu, J.; Kang, W.; Jiang, T.; Wang, A. Ultrasmall Silver Nanoparticles Supported on Silica and Their Catalytic Performances for Carbon Monoxide Oxidation. Catal. Commun. 2011, 12, 616–620. DOI: . DOI: 10.1016/j.catcom.2010.12.012.
  • Yuan, B.; Wicks, D. A. Thermotropic Color Changing Nanoparticles Prepared by Encapsulating Blue Polystyrene Particles with a Poly-N-Isopropylacrylamide Gel. J. Appl. Polym. Sci. 2007, 105, 446–452. DOI: . DOI: 10.1002/app.26059.
  • Kundu, S.; Liang, H. Shape-Selective Formation and Characterization of Catalytically Active Iridium Nanoparticles. J. Colloid Interface Sci. 2011, 354, 597–606. DOI: . DOI: 10.1016/j.jcis.2010.11.032.
  • Wang, Y.; Ren, J.; Deng, K.; Gui, L.; Tang, Y. Preparation of Tractable Platinum, Rhodium, and Ruthenium Nanoclusters with Small Particle Size in Organic Media. Chem. Mater. 2000, 12, 1622–1627. DOI: 10.1002/chin.200041202.
  • Pal, J.; Pal, T. Faceted Metal and Metal Oxide Nanoparticles: Design, Fabrication and Catalysis. Nanoscale 2015, 7, 14159–14190. DOI: . DOI: 10.1039/c5nr03395k.
  • Gerber, S. J.; Erasmus, E. Surfactant-Stabilized Nano-Metal Hexacyanoferrates with Electrocatalytic and Heterogeneous Catalytic Applications. Transit. Met. Chem. 2018, 43, 409–420. DOI: 10.1007/s11243-018-0228-2.
  • Chenchen, Y.; Wuping, X.; Hengbo, Y.; et al. Hydrogenation of 3-Nitro-4-Methoxy-Acetylaniline with H2 to 3-Amino-4-Methoxy-Acetylaniline Catalyzed by Bimetallic Copper/Nickel Nanoparticles. New J. Chem. 2017, 41, 3358–3366. DOI: 10.1039/C7NJ00066A.
  • Feng, Y.; Li, W.; Meng, M.; Yin, H.; Mi, J. Mesoporous Sn(IV) Doping MCM-41 Supported Pd Nanoparticles for Enhanced Selective Catalytic Oxidation of 1,2-Propanediol to Pyruvic Acid. Appl. Catal.-B Environ. 2019, 253, 111–120. DOI: . DOI: 10.1016/j.apcatb.2019.04.051.
  • Wuping, X.; Yonghai, F.; Hengbo, Y.; et al. Catalytic Oxidation of 1,2-Propanediol to Lactic Acid with O2 Under Atmospheric Pressure over Pd-Ag Bimetallic Nanoparticles and Reaction Kinetics. J. Nanosci. Nanotechnol. 2016, 16, 9621–9633. DOI: 10.1166/jnn.2016.12343.
  • Yonghai, F.; Wuping, X.; Hengbo, Y.; et al. Selective Oxidation of 1,2-Propanediol to Lactic Acid Catalyzed by Hydroxyapatite-Supported Pd and Pd-Ag Nanoparticles. RSC Adv. 2015, 5, 106918–106929. DOI: 10.1039/C5RA21410F.
  • Yonghai, F.; Hengbo, Y.; Dezhi, G.; et al. Selective Oxidation of 1,2-Propanediol to Lactic Acid Catalyzed by Hydroxylapatitenanorod-Supported Au/Pd Bimetallic Nanoparticles Under Atmospheric Pressure. J. Catal. 2014, 316, 67–77. DOI: 10.1016/j.jcat.2014.04.020.
  • Khanal, S.; Spitale, A.; Bhattarai, N.; Bahena, D.; Velazquez-Salazar, J. J.; Mejía-Rosales, S.; M Mariscal, M.; José-Yacaman, M. Synthesis, Characterization, and Growth Simulations of Cu-Pt Bimetallic Nanoclusters. Beilstein J. Nanotechnol. 2014, 5, 1371–1379. DOI: 10.3762/bjnano.5.150.
  • Chenchen, Y.; Aili, W.; Hengbo, Y. Hydrogenation of 1-Nitroanthraquinone to 1-Aminoanthraquinone Catalyzed by Bimetallic CuPtx Nanoparticles. J. Nanosci. Nanotechnol. 2019, 19, 5906–5913. DOI: 10.1166/jnn.2019.16577.
  • Lingqin, S.; Xin, Z.; Chuanxun, Z. Functional Characterization of Bimetallic CuPdx Nanoparticles in Hydrothermal Conversion of Glycerol to Lactic Acid. J. Food Biochem. 2019, 43, e12931. DOI: 10.1111/jfbc.12931.
  • Linhqin, S.; Xin, Z.; Aili, W.; et al. Hydrothermal Conversion of High-Concentrated Glycerol to Lactic Acid Catalyzed by Bimetallic CuAux (x = 0.01 – 0.04) Nanoparticles and Their Reaction Kinetics. RSC Adv. 2017, 7, 30725–30739. DOI: 10.1039/C7RA04415A.
  • Wuping, X.; Hengbo, Y.; Zhipeng, L. Catalytic Oxidation of 1,2-Propanediol Over Bimetallic Cu@Au Core/Shell Nanoparticles. Catal. Lett. 2016, 146, 1139–1152. DOI: 10.1007/s10562-016-1736-3.
  • Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Bimetallic IrNi Core Platinum Monolayer Shell Electrocatalysts for the Oxygen Reduction Reaction. J. Energy Environ. Sci. 2012, 5, 5297–5304. DOI: 10.1039/C1EE02067F.
  • Singh, H. P.; Gupta, N.; Sharma, S. K.; Sharma, R. K. Synthesis of Bimetallic Pt-Cu Nanoparticles and Their Application in the Reduction of Rhodamine B. J. Colloids and Surf A: Physiochem. Eng. Aspects 2013, 416, 43–50. DOI: . DOI: 10.1016/j.colsurfa.2012.09.048.
  • Goel, A.; Lasyal, R. Degradation of Orange G dye by Hexacyanoferrate (III) Ions in the Presence of Iridium Nanoparticles: Effect of System Parameters and Kinetic Study. Desalin. Water Treat. 2016, 57, 17547–17556. DOI: . DOI: 10.1080/19443994.2015.1086694.
  • Baranova, E. A.; Amir, T.; Mercier, P. H.; Patarachao, B.; Wang, D.; Le Page, Y. Single-Step Polyol Synthesis of Alloy Pt 7 Sn 3 Versus Bi-Phase Pt/SnO x Nano-Catalysts of Controlled Size for Ethanol Electro-Oxidation. J. Appl. Electrochem. 2010, 40, 1767–1777. 10). DOI: 10.1007/s10800-010-0135-5.
  • You, D. J.; Kwon, K.; Joo, S. H.; Kim, J. H.; Kim, J. M.; Pak, C.; Chang, H. Carbon-Supported Ultra-High Loading Pt Nanoparticle Catalyst by Controlled Overgrowth of Pt: Improvement of Pt Utilization Leads to Enhanced Direct Methanol Fuel Cell Performance. Int. J. Hydro. Energy 2012, 37, 6880–6885. DOI: . DOI: 10.1016/j.ijhydene.2012.01.103.
  • Devarajan, S.; Bera, P.; Sampath, S. Bimetallic Nanoparticles: A Single Step Synthesis, Stabilization, and Characterization of Au–Ag, Au–Pd, and Au–Pt in Sol–Gel Derived Silicates. J. Colloid Interface Sci. 2005, 290, 117–129. DOI: h1016/j.jcis.2005.04.034 DOI: 10.1016/j.jcis.2005.04.034.
  • Monshi, A.; Foroughi, M. R.; Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. WJNSE. 2012, 2, 154–160. DOI: 10.4236/wjnse.2012.23020a.
  • Pouretedal, H. R.; Shafeie, A.; Keshavarz, M. H. Preparation, Characterization and Catalytic Activity of Tin Dioxide and Zero-Valent Tin Nanoparticles. J. Korean Chem. Soc. 2012, 56, 484–490. DOI: 10.5012/jkcs.2012.56.4.484.
  • Couto, G. G.; Klein, J. J.; Schreiner, W. H.; Mosca, D. H.; de Oliveira, A. J.; Zarbin, A. J. Nickel Nanoparticles Obtained by a Modified Polyol Process: Synthesis, Characterization, and Magnetic Properties. J. Colloid Interface Sci. 2007, 311, 461–468. DOI: 10.1016/j.jcis.2007.03.045.
  • Goel, A.; Sharma, S. Mechanistic Study of the Oxidation of L-Phenylalanine by Hexacyanoferrate (III) Catalyzed by Iridium (III) in Aqueous Alkaline Medium. Transit. Met. Chem. 2010, 35, 549–554. DOI: 10.1007/s11243-010-9362-1.
  • Goel, A.; Chaudhary, M. Highly Dispersed PVP-Supported Ir–Ni Bimetallic Nanoparticles as High Performance Catalyst for Degradation of Metanil Yellow. Bull. Mater. Sci. 2018, 41, 81. DOI: 10.1007/s12034-018-1591-5.
  • Du, W.; Wang, Q.; Saxner, D.; Deskins, N. A.; Su, D.; Krzanowski, J. E.; Frenkel, A. I.; Teng, X. Highly Active Iridium/Iridium-Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction. J. Am. Chem. Soc. 2011, 133, 15172–15183. DOI: https://doi.org/10.1016/j.arabjc.2017.02.004. DOI: 10.1021/ja205649z.
  • Haspulat, B.; Sarıbel, M.; Kamış, H. Surfactant Assisted Hydrothermal Synthesis of SnO Nanoparticles with Enhanced Photocatalytic Activity. Arab. J. Chem. 2020, 13, 96–108. DOI: https://doi.org/10.1021/ja205649z. DOI: 10.1016/j.arabjc.2017.02.004.
  • Nandhini, N. T.; Rajeshkumar, S.; Mythili, S. The Possible Mechanism of Eco-Friendly Synthesized Nanoparticles on Hazardous Dyes Degradation. Biocatal. Agric. Biotech. 2019, 19, 101138. DOI: 10.1016/j.bcab.2019.101138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.