644
Views
7
CrossRef citations to date
0
Altmetric
Article

Mn-doped NaFeO2 from a low purity-Fe precursor and its performance as cathode for Sodium-Ion Battery

, , , & ORCID Icon
Pages 383-390 | Received 17 Apr 2020, Accepted 07 Jun 2020, Published online: 14 Jul 2020

References

  • Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems. Energy Environ. Sci. 2012, 5, 5884. DOI: 10.1039/c2ee02781j.
  • Pan, H.; Hu, Y.; Chen, L. Environmental Science Large-Scale Electric Energy Storage †. Energy Environ. Sci. 2013, 6, 2338. DOI: 10.1039/c3ee40847g.
  • Lim, S. Y.; Kim, H.; Shakoor, R. A.; Jung, Y.; Choi, J. W. Electrochemical and Thermal Properties of NASICON Structured Na 3 V 2 (PO 4) 3 as a Sodium Rechargeable Battery Cathode : A Combined Experimental and Theoretical Study Service Electrochemical and Thermal Properties of NASICON Structured Na 3 V 2 (PO 4. J. Electrochem. Soc. 2012, 159, A1393–A1397. DOI: 10.1149/2.015209jes.
  • Didier, C.; et al. Electrochemical Na-Deintercalation from NaVO2. Electrochem. Solid -State Lett. 2011, 14, 1–5.
  • Saadoune, I.; Difi, S.; Doubaji, S.; Edstrom, K.; Lippens, P. E. Electrode Materials for Sodium Ion Batteries: A Cheaper Solution for the Energy Storage. In International Conference on Optimization of Electrical and Electronic Equipment, OPTIM, 2014; Vol. 2014; pp 1078–1081.
  • Tang, J.; Dysart, A. D.; Pol, V. G. Advancement in Sodium-Ion Rechargeable Batteries. Curr. Opin. Chem. Eng. 2015, 9, 34–41. DOI: 10.1016/j.coche.2015.08.007.
  • Samin, N. K.; Rusdi, R.; Kamarudin, N.; Kamarulzaman, N. Synthesis and Battery Studies of Sodium Cobalt Oxides, NaCoO 2 Cathodes. Adv. Mater. Res. 2012, 545, 185–189. DOI: 10.4028/www.scientific.net/AMR.545.185.
  • Ma, X.; Chen, H.; Ceder, G. Electrochemical Properties of Monoclinic NaMnO2. J. Electrochem. Soc. 2011, 158, A1307–1312. DOI: 10.1149/2.035112jes.
  • Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu, C.; Li, Z. Mechanism of Cement Paste Reinforced by Graphene Oxide/Carbon Nanotubes Composites with Enhanced Mechanical Properties. RSC Adv. 2015,5, 100598–100605.
  • Vassilaras, P.; Ma, X.; Li, X.; Ceder, G. Electrochemical Properties of Monoclinic NaNiO 2. J. Electrochem. Soc. 2013, 160, A207–211. DOI: 10.1149/2.023302jes.
  • Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N. Electrochemistry Communications Electrochemical Intercalation Activity of Layered NaCrO 2 vs. LiCrO 2. Electrochem. Commun. 2010, 12, 355–358. DOI: 10.1016/j.elecom.2009.12.033.
  • Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries . Nat. Mater. 2012, 11, 512–517. DOI: 10.1038/nmat3309.
  • Yabuuchi, N.; Yano, M.; Yoshida, H.; Kuze, S. Synthesis and Electrode Performance of O3-Type NaFeO 2 -NaNi 1/2 Mn 1/2 O 2 Solid Solution for Rechargeable. J. Electrochem. Soc., 2013, 160, 3131–3137.
  • Zhao, Y.; Pang, S.; Zhang, C. Nitridated Mesoporous Li 4 Ti 5 O 12 Spheres for High-Rate Lithium-Ion Batteries Anode Material. J. Solid State Electrochem. 2013, 17, 1479–1485.
  • Wang, X.; Liu, G.; Iwao, T.; Okubo, M.; Yamada, A. Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO 2 − NaNiO 2 Solid Solution for Enhanced Electrochemical Properties. J. Phys. Chem. C 2014, 118, 2970–2978. DOI: 10.1021/jp411382r.
  • Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural Classification and Properties of the Layered Oxides. Physica 1980, 99, 81–85. vol DOI: 10.1016/0378-4363(80)90214-4.
  • Zhao, Y.; et al. Recent Progress on Solid Oxide Fuel Cell: Lowering Temperature and Utilizing Non-Hydrogen Fuels. Int. J. Hydrogen Energy 2013, 38, 16498-16517.
  • Okada, S.; Tahahashi, Y.; Kiyabu, T.; Doi, T.; Yamaki, J.-I.; Nishida, T. Cell Voltage [V vs. Na +/Na] Specific Capacity [mAh/g]. In ECS Meeting 1996, Vol. 143; p 2435.
  • Yoshida, H.; Yabuuchi, N.; Komaba, S. Electrochemistry Communications for Na-Ion Batteries. Electrochem. Commun. 2013, 34, 60–63. DOI: 10.1016/j.elecom.2013.05.012.
  • Zhao, J.; Xu, J.; Hoe, D.; Dimov, N.; Shirley, Y.; Okada, S. Electrochemical and Thermal Properties of P2-Type Na 2/3 Fe 1/3 Mn 2/3 O 2 for Na-Ion Batteries. J. Power Sources 2014, 264, e11–e11.
  • Lu, Z.; Dahn, J. R. In Situ X-Ray Diffraction Study of P2 - Na2/3Ni 1/3Mn2/3O2. J. Electrochem. Soc. 2001, 148, 1–6.
  • Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Study on the Reversible Electrode Reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery . Inorg. Chem. 2012, 51, 6211–6220. DOI: 10.1021/ic300357d.
  • Park, J.; Park, G.; Kwak, H. H.; Hong, S.; Lee, J. Enhanced Rate Capability and Cycle Performance of Titanium-Substituted P2-Type Na0.67Fe0.5Mn0.5O2 as a Cathode for Sodium-Ion Batteries. ACS Omega. 2018, 3, 361–368. DOI: 10.1021/acsomega.7b01481.
  • Rahmawati, F.; Kusumaningtyas, A.; Saraswati, T. E.; Yahya, I.; Lee, Y. Preparation of NaFeO2 from Iron Sand as a Raw Material for Cathode of Sodium-Ion Battery. In AIP Conference Proceedings, 2237,020071, AIP Publishing LLC, 2020, New York, USA.
  • Rahman, M. M.; Khan, S. B.; Jamal, A.; Faisal, M.; Aisiri, A. M. Iron Oxide Nanoparticles. Nanomaterials. In Nanomaterials, In Tech, 2011, pp 43–66, London, UK.
  • Deepty, M.; Srinivas, C.; Kumar, E. R.; Mohan, N. K.; Prajapat, C. L.; Rao, T. V. C.; Meena, S. S.; Verma, A. K.; Sastry, D. L. XRD, EDX, FTIR and ESR Spectroscopic Studies of co-Precipitated Mn – Substituted Zn – Ferrite Nanoparticles. Ceram. Int. 2019, 45, 8037–8044. DOI: 10.1016/j.ceramint.2019.01.029.
  • Zhang, L.; Zhou, M.; Shao, L.; Wang, W.; Fan, K.; Qin, Q. Reactions of Fe with H2O and FeO with H2. A Combined Matrix Isolation FTIR and Theoretical Study. J. Phys. Chem. A 2001, 105, 6998–7003. DOI: 10.1021/jp010914n.
  • Xu, X.; Yang, Y.; Jia, Y.; Lian, X.; Zhang, Y.; Feng, F.; Liu, Q.; Xi, B.; Jiang, Y. Heterogeneous Catalytic Degradation of 2,4-Dinitrotoluene by the Combined Persulfate and Hydrogen Peroxide Activated by the as-Synthesized Fe-Mn Binary Oxides. Chem. Eng. J. 2019, 374, 776–786. DOI: 10.1016/j.cej.2019.05.138.
  • Khanna, L.; Verma, N. K. PEG/CaFe 2 O 4 Nanocomposite : Structural, Morphological, Magnetic and Thermal Analyses. Phys. B Phys. Condens. Matter. 2013, 427, 68–75. DOI: 10.1016/j.physb.2013.05.040.
  • Singh, S.; Kumar, A.; Gurmeet, T.; Lotey, S. Optical and Luminescence Properties of β-NaFeO2 Nanoparticles. Electron. Mater. Lett. 2018, 14, 594–596. DOI: 10.1007/s13391-018-0067-5.
  • López, T.; Ortiz, E.; Alvarez, M.; Manjarrez, J.; Montes, M.; Navarro, P.; Odriozola, J. A. Catalytic Nanomedicine : Functionalisation of Nanostructured Cryptomelane. Mater. Chem. Phys. 2010, 120, 518–525. DOI: 10.1016/j.matchemphys.2009.11.049.
  • Durai, L.; Badhulika, S. Facile Synthesis of Large Area Pebble-like B-NaFeO2 Perovskite for Simultaneously Sensing of Dopamine, Uric Acid, Xanthine and Hypoxanthine in Human Blood. Mater. Sci. Eng. C 2020, 109, 110631. DOI: 10.1016/j.msec.2020.110631.
  • Jha, P. K.; Troper, A.; Da Cunha Lima, I. C.; Talati, M.; Sanyal, S. P. Phonon Properties of Intrinsic Insulating Phase of the Cobalt Oxide Superconductor NaCoO2. Phys. B Condens. Matter. 2005, 366, 153–161. DOI: 10.1016/j.physb.2005.05.030.
  • Li, Z.; Yang, J.; Hou, J. G.; Zhu, Q. First-Principles Lattice Dynamics of NaCoO2. Phys. Rev. B 2004, 70, 144518. DOI: 10.1103/PhysRevB.70.144518.
  • Durai, L.; Badhulika, S. A Facile Solid-State Reaction Assisted Synthesis of a Berry-like NaNbO3 Perovskite Structure for Binder-Free, Highly Selective Sensing of Dopamine in Blood Sample. New J. Chem. 2019, 43, 11994–12003. DOI: 10.1039/C9NJ02282A.
  • Wu, J.; Li, Z.; Ju, L.; Li, D.; Zheng, J.; Xu, Y. Effect of the Impurities on Electrochemical Performance of High-Voltage LiCoPO 4 Electrode. Rare Metal Mater. Eng. 2013, 42, 684–687. DOI: 10.1016/S1875-5372(13)60056-9.
  • Apriyani, K.; Permadani, I.; Syarif, D. G.; Soepriyanto, S.; Rahmawati, F. 2016 Electrical Conductivity of Zirconia and Yttrium-Doped Zirconia from Indonesian Local Zircon as Prospective Material for Fuel Cells. In IOP Conference Series: Materials Science and Engineering; 10th Joint Conference on Chemistry, p 012023. DOI: 10.1088/1757-899X/107/1/012023.
  • Rutman, J.; Raz, S.; Riess, I. Reducing over Potential by Surface Mixed Ionic-Electronic Conduction. Solid State Ionics 2006, 177, 1771–1777. DOI: 10.1016/j.ssi.2006.04.012.
  • Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. DOI: 10.1021/cr500192f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.