103
Views
2
CrossRef citations to date
0
Altmetric
Article

Preparation, photoluminescence and semiconductive band gap of a gadolinium compound

Pages 420-426 | Received 21 Feb 2020, Accepted 07 Jun 2020, Published online: 17 Jul 2020

References

  • Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Tetraphenylethylene Immobilized Metal–Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr 2 O 72– and Nitroaromatic Explosives. Cryst. Growth Des 2017, 17, 6041–6048. DOI: 10.1021/acs.cgd.7b01155.
  • Yin, W. H.; Xiong, Y. Y.; Wu, H. Q.; Tao, Y.; Yang, L. X.; Li, J. Q.; Tong, X. L.; Luo, F. Functionalizing a Metal-Organic Framework by a Photoassisted Multicomponent Postsynthetic Modification Approach Showing Highly Effective Hg(II) Removal. Inorg. Chem. 2018, 57, 8722–8725. DOI: 10.1021/acs.inorgchem.8b01457.
  • Wu, Y. P.; Tian, J. W.; Liu, S.; Li, B.; Zhao, J.; Ma, L. F.; Li, D. S.; Lan, Y. Q.; Bu, X. Bi-Microporous Metal-Organic Frameworks with Cubane [M4 (OH)4 ] (M = Ni, Co) Clusters and Pore-Space Partition for Electrocatalytic Methanol Oxidation Reaction. Angew. Chem. Int. Ed. Engl 2019, 58, 12185–12189. DOI: 10.1002/anie.201907136.
  • Wu, H. Q.; Yan, C. S.; Luo, F.; Krishna, R. Beyond Crystal Engineering: Significant Enhancement of C2H2/CO2 Separation by Constructing Composite Material. Inorg. Chem. 2018, 57, 3679–3682. DOI: 10.1021/acs.inorgchem.8b00341.
  • Liu, S. J.; Han, S. D.; Zhao, J. P.; Xu, J.; Bu, X. H. In-Situ Synthesis of Molecular Magnetorefrigerant Materials. Coord. Chem. Rev 2019, 394, 39–52. DOI: 10.1016/j.ccr.2019.05.009.
  • Yang, X. G.; Ma, L. F.; Yan, D. P. Facile Synthesis of 1D Organic-Inorganic Perovskite Micro-Belts with High Water Stability for Sensing and Photonic Applications. Chem. Sci. 2019, 10, 4567–4572. DOI: 10.1039/C9SC00162J.
  • Fan, C. B.; Gong, L. L.; Huang, L.; Luo, F.; Krishna, R.; Yi, X. F.; Zheng, A. M.; Zhang, L.; Pu, S. Z.; Feng, X. F.; et al. Significant Enhancement of C2 H2 /C2 H4 Separation by a Photochromic Diarylethene Unit: A Temperature- and Light-Responsive Separation Switch. Angew. Chem. Int. Ed. Engl 2017, 56, 7900–7906. DOI: 10.1002/anie.201704765.
  • Yao, S. L.; Liu, S. J.; Tian, X. M.; Zheng, T. F.; Cao, C.; Niu, C. Y.; Chen, Y. Q.; Chen, J. L.; Huang, H.; Wen, H. R. A ZnII-Based Metal-Organic Framework with a Rare Tcj Topology as a Turn-On Fluorescent Sensor for Acetylacetone. Inorg. Chem. 2019, 58, 3578–3581. DOI: 10.1021/acs.inorgchem.8b03316.
  • Zhao, Y.; Wang, Y. J.; Wang, N.; Zheng, P.; Fu, H. R.; Han, M. L.; Ma, L. F.; Wang, L. Y. Tetraphenylethylene-Decorated Metal-Organic Frameworks as Energy-Transfer Platform for the Detection of Nitro-Antibiotics and White-Light Emission. Inorg. Chem. 2019, 58, 12700–12706. DOI: 10.1021/acs.inorgchem.9b01588.
  • Gong, L. L.; Feng, X. F.; Luo, F.; Yi, X. F.; Zheng, A. M. Removal and Safe Reuse of Highly Toxic Allyl Alcohol Using a Highly Selective Photo-Sensitive Metal–Organic Framework. Green Chem. 2016, 18, 2047–2055. DOI: 10.1039/C5GC02182K.
  • Cheng, Y. J.; Wang, R.; Wang, S.; Xi, X. J.; Ma, L. F.; Zang, S. Q. Encapsulating [Mo3S13]2- Clusters in Cationic Covalent Organic Frameworks: enhancing Stability and Recyclability by Converting a Homogeneous Photocatalyst to a Heterogeneous Photocatalyst. Chem. Commun. (Camb.) 2018, 54, 13563–13566. DOI: 10.1039/c8cc07784c.
  • Qin, J. H.; Huang, Y. D.; Zhao, Y.; Yang, X. G.; Li, F.-F.; Wang, C.; Ma, L. F. Highly Dense Packing of Chromophoric Linkers Achievable in a Pyrene-Based Metal-Organic Framework for Photoelectric Response. Inorg. Chem. 2019, 58, 15013–15016. DOI: 10.1021/acs.inorgchem.9b02203.
  • Zhao, Y.; Yang, X. G.; Lu, X. M.; Yang, C. D.; Fan, N. N.; Yang, Z. T.; Wang, L. Y.; Ma, L. F. {Zn6} Cluster Based Metal-Organic Framework with Enhanced Room-Temperature Phosphorescence and Optoelectronic Performances. Inorg. Chem. 2019, 58, 6215–6221. DOI: 10.1021/acs.inorgchem.9b00450.
  • Fu, H. R.; Wang, N.; Qin, J. H.; Han, M. L.; Ma, L. F.; Wang, F. Spatial Confinement of a Cationic MOF: A SC-SC Approach for High Capacity Cr(vi)-Oxyanion Capture in Aqueous Solution. Chem. Commun. (Camb.) 2018, 54, 11645–11648. DOI: 10.1039/c8cc05990j.
  • Gosavi, S. A.; Nandal, D. H.; Pawar, S. S. Synthesis and Biological Evaluation of Some Novel MannichBases of Isoxazoline Derivatives as Possible Antimicrobial Agents. Asian J. Chem. 2019, 31, 2821–2826. DOI: 10.14233/ajchem.2019.22247.
  • Zheng, L.-L.; Hu, S.; Zhou, A.-J.; Yang, R.-C. Effect of Pyridinecarboxylic Acid on the Molecular Packing Architectures of Disc-​Shaped 2,​3,​6,​7,​10,​11-​Hexahydroxytriphenylene with Both Large π System and Hydrogen Bond Sites. Chinese J. Struct. Chem. 2019, 38, 1718.
  • Souri, B.; Reza Rezvani, A.; Abbasi, S.; Hayati, P.; Centore, R. An Investigation on the Morphology of a New Coordination Polymer via Change Effective Factors Based on Eco-Friendly Sonochemical Synthesis; New Precursor for the Preparation of Cadmium(II) Oxide. Inorg. Chim. Acta 2019, 498, 119134. DOI: 10.1016/j.ica.2019.119134.
  • Lin, W.-S.; Kuang, H.-M.; Luo, H.; Chen, W.-T. Upconversion Photoluminescence and Energy Transfer Mechanism of a Novel Terbium-​Mercury Compound. Chinese J. Struct. Chem. 2019, 38, 1012.
  • Zheng, T.-F.; Yao, S.-L.; Cao, C.; Liu, S.-J.; Hu, H.-K.; Zhang, T.; Huang, H.-P.; Liao, J.-S.; Chen, J.-L.; Wen, H.-R. Large Magnetic Entropy Changes in Three Gd III Coordination Polymers Containing Gd III Chains. New J. Chem. 2017, 41, 8598–8603. DOI: 10.1039/C7NJ01463E.
  • Wei, J.-H.; Yi, J.-W.; Han, M.-L.; Li, B.; Liu, S.; Wu, Y.-P.; Ma, L.-F.; Li, D.-S. A Water-Stable Terbium(III)-Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions. Chem. Asian J. 2019, 14, 3694–3701. DOI: 10.1002/asia.201900706.
  • Talib, A. J.; Alkahtani, M.; Jiang, L.; Alghannam, F.; Brick, R.; Gomes, C. L.; Scully, M. O.; Sokolov, A. V.; Hemmer, P. R. Lanthanide Ions Doped in Vanadium Oxide for Sensitive Optical Glucose Detection. Opt. Mater. Express 2018, 8, 3277. DOI: 10.1364/OME.8.003277.
  • Li, J. Q.; Gong, L. L.; Feng, X. F.; Zhang, L.; Wu, H. Q.; Yan, C. S.; Xiong, Y. Y.; Gao, H. Y.; Luo, F. Direct Extraction of U(VI) from Alkaline Solution and Seawater via Anion Exchange by Metal-Organic Framework. Chem. Eng. J. 2017, 316, 154–159. DOI: 10.1016/j.cej.2017.01.046.
  • Li, R.-P.; Liu, Q.-Y.; Wang, Y.-L.; Liu, C.-M.; Liu, S.-J. Evolution from Linear Tetranuclear Clusters into One-Dimensional Chains of Dy( Iii ) Single-Molecule Magnets with an Enhanced Energy Barrier. Inorg. Chem. Front. 2017, 4, 1149–1156. DOI: 10.1039/C7QI00178A.
  • Zhou, Z.; Gu, J. P.; Qiao, X. G.; Wu, H. X.; Fu, H. R.; Wang, L.; Li, H. Y.; Ma, L. F. Double Protected Lanthanide Fluorescence Core@Shell Colloidal Hybrid for the Selective and Sensitive Detection of ClO−. Sensor. Actuat. B-Chem. 2019, 282, 437–442. DOI: 10.1016/j.snb.2018.11.103.
  • Usman, M.; Smith, M. D.; Morrison, G.; Klepov, V. V.; Zhang, W.; Halasyamani, P. S.; Zur Loye, H.-C. Molten Alkali Halide Flux Growth of an Extensive Family of Noncentrosymmetric Rare Earth Sulfides: Structure and Magnetic and Optical (SHG) Properties. Inorg. Chem. 2019, 58, 8541–8550. DOI: 10.1021/acs.inorgchem.9b00849.
  • Luo, M. B.; Xiong, Y. Y.; Wu, H. Q.; Feng, X. F.; Li, J. Q.; Luo, F. The MOF + Technique: A Significant Synergic Effect Enables High Performance Chromate Removal. Angew. Chem. Int. Ed. Engl. 2017, 56, 16376–16379. DOI: 10.1002/anie.201709197.
  • Liu, S.-J.; Cao, C.; Yao, S.-L.; Zheng, T.-F.; Wang, Z.-X.; Liu, C.; Liao, J.-S.; Chen, J.-L.; Li, Y.-W.; Wen, H.-R. Temperature- and Vapor-Induced Reversible Single-Crystal-to-Single-Crystal Transformations of Three 2D/3D Gd III –Organic Frameworks Exhibiting Significant Magnetocaloric Effects. Dalton Trans. 2017, 46, 64–70. DOI: 10.1039/C6DT03589B.
  • Wen, G. X.; Han, M. L.; Wu, X. Q.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Li, D. S.; Ma, L. F. A Multi-Responsive Luminescent Sensor Based on a Super-Stable Sandwich-Type Terbium(Iii)-Organic Framework. Dalton Trans. 2016, 45, 15492–15499. DOI: 10.1039/c6dt03057b.
  • Zheng, T.-F.; Tian, X.-M.; Yao, S.-L.; Cao, C.; Cai, J.-B.; Liu, S.-J. Two Chain-Based Tb III /Dy III Complexes Derived from m -Nitrobenzoic Acid with Totally Different Structures and Magnetic Properties. J. Mol. Struct. 2018, 1165, 326–331. DOI: 10.1016/j.molstruc.2018.03.112.
  • Mayans, J.; Sorace, L.; Font-Bardia, M.; Escuer, A. Chiral Mononuclear Lanthanide Complexes Derived from Chiral Schiff Bases: Structural and Magnetic Studies. Polyhedron 2019, 170, 264–270. DOI: 10.1016/j.poly.2019.05.051.
  • Grebenyuk, D.; Martynova, I.; Tsymbarenko, D. Self-Assembly of Hexanuclear Lanthanide Carboxylate Clusters of Three Architectures. Eur. J. Inorg. Chem. 2019, 2019, 3103–3111. DOI: 10.1002/ejic.201900643.
  • Zhang, H.; Liu, H.; Jiang, W.; Zhao, S.-S. A Series of Resorcin[4]Arene-Based Lanthanide-Metal Organic Frameworks for Barcode and Luminescent Multicolor Tuning Property. Dyes Pigments 2019, 171, 107665. DOI: 10.1016/j.dyepig.2019.107665.
  • Yao, S.-L.; Cao, C.; Tian, X.-M.; Zheng, T.-F.; Liu, S.-J.; Tong, X.-L.; Liao, J.-S.; Chen, J.-L.; Wen, H.-R. Three Gd-Based Metal-Organic Frameworks Constructed from Similar Dicarboxylate Ligands with Large Magnetic Entropy Changes. ChemistrySelect 2017, 2, 10673–10677. DOI: 10.1002/slct.201702223.
  • Staszak, K.; Wieszczycka, K.; Marturano, V.; Tylkowski, B. Lanthanides Complexes – Chiral Sensing of Biomolecules. Coord. Chem. Rev 2019, 397, 76–90. DOI: 10.1016/j.ccr.2019.06.017.
  • Zheng, T.-F.; Cao, C.; Dong, P.-P.; Liu, S.-J.; Wang, F.-F.; Tong, X.-L.; Liao, J.-S.; Chen, J.-L.; Wen, H.-R. Synthesis, Structures and Magnetocaloric Properties of Two Dinuclear GdIII Clusters Derived from Monocarboxylate Ligands. Polyhedron 2016, 113, 96–101. DOI: 10.1016/j.poly.2016.04.011.
  • Demakov, P. A.; Sapchenko, S. A.; Samsonenko, D. G.; Dybtsev, D. N.; Fedin, V. P. Gadolinium Break in a Series of Three-Dimensional Trans-1,4-Cyclohexane Dicarboxylates of Rare Earth Elements. J. Struct. Chem. 2019, 60, 815–822. DOI: 10.1134/S0022476619050159.
  • Li, H.-L.; Lian, C.; Chen, L.-J.; Zhao, J.-W.; Yang, G.-Y. Two Ce3+-Substituted Selenotungstates Regulated by N, N-Dimethylethanolamine and Dimethylamine Hydrochloride. Inorg. Chem. 2019, 58, 8442–8450. DOI: 10.1021/acs.inorgchem.9b00582.
  • Calvete, M. J. F.; Pinto, S. M. A.; Pereira, M. M.; Geraldes, C. F. G. C. Metal Coordinated Pyrrole-Based Macrocycles as Contrast Agents for Magnetic Resonance Imaging Technologies: Synthesis and Applications. Coor. Chem. Rev. 2017, 333, 82–107. DOI: 10.1016/j.ccr.2016.11.011.
  • Salerno, M.; Porqueras, D. S. D. Alzheimer's Disease: The Use of Contrast Agents for Magnetic Resonance Imaging to Detect Amyloid Beta Peptide inside the Brain. Coor. Chem. Rev 2016, 327–328, 27–34. DOI: 10.1016/j.ccr.2016.04.018.
  • Wahsner, J.; Gale, E. M.; Rodriguez-Rodriguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. DOI: 10.1021/acs.chemrev.8b00363.
  • Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Macromolecules, Dendrimers, and Nanomaterials in Magnetic Resonance Imaging: The Interplay between Size, Function, and Pharmacokinetics. Chem. Rev. 2010, 110, 2921–2959. DOI: 10.1021/cr900232t.
  • Pramanik, H. A. R.; Chanda, C.; Paul, P. C.; Bhattacharjee, C. R.; Prasad, S. K.; Rao, D. S. S. Novel Tris-Buffer Based Schiff Base Bearing Long Flexible Alkoxy Arm and Its Lanthanide Complexes: Mesomorphism and Photoluminescence. J. Mol. Struct. 2019, 1180, 472–479. DOI: 10.1016/j.molstruc.2018.12.014.
  • Silva do Nascimento, J. F.; de Araujo, A. M. U.; Kulesza, J.; Monteiro, A. F. D.; Alves, S.; Barros, B. S. Solid-State Tunable Photoluminescence in Gadolinium-Organic Frameworks: effects of the Eu 3+ Content and co-Doping with Tb 3+. New J. Chem. 2018, 42, 5514–5522. DOI: 10.1039/C7NJ04625A.
  • Liu, S. J.; Cao, C.; Xie, C. C.; Zheng, T. F.; Tong, X. L.; Liao, J. S.; Chen, J. L.; Wen, H. R.; Chang, Z.; Bu, X. H. Tricarboxylate-Based Gd(III) Coordination Polymers Exhibiting Large Magnetocaloric Effects. Dalton Trans. 2016, 45, 9209–9215. DOI: 10.1039/C6DT01349J.
  • Tang, X.; Ye, W.; Hua, J.; Chen, M.; Cheng, H.; Ma, Y.; Yuan, R. Four CoII-GdIII Mixed-Metal Phosphonate Clusters as Molecular Magnetic Refrigerants. Inorg. Chim. Acta 2016, 453, 142–148. DOI: 10.1016/j.ica.2016.08.021.
  • Liu, S. J.; Xie, X. R.; Zheng, T. F.; Bao, J.; Liao, J. S.; Chen, J. L.; Wen, H. R. Three-Dimensional Two-Fold Interpenetrated Cr III –Gd III Heterometallic Framework as an Attractive Cryogenic Magnetorefrigerant. CrystEngComm 2015, 17, 7270–7275. DOI: 10.1039/C5CE00997A.
  • Singh, V.; Sivaramaiah, G.; Singh, N.; Mohapatra, M.; Hakeem, D. A.; Pathak, M. S.; Rao, J. L. EPR and Optical Investigation of Ultraviolet-Emitting Gd3Ga5O12 Garnet. J. Mater. Sci: Mater. Electron. 2018, 29, 944–951. DOI: 10.1007/s10854-017-7992-1.
  • Singh, V.; Singh, N.; Pathak, M. S.; Watanabe, S.; Gundu Rao, T. K.; Singh, P. K.; Kwon, Y.-W. PL and ESR of Gd3+ in LaMgAl11O19 Phosphors. J. Mater. Sci: Mater. Electron. 2018, 29, 4632–4638. DOI: 10.1007/s10854-017-8414-0.
  • Kamada, K.; Hishinuma, K.; Kurosawa, S.; Yamaji, A.; Shoji, Y.; Ohashi, Y.; Yokota, Y.; Yoshikawa, A. Growth and Scintillation Properties of Tb Doped LiGdF4/LiF Eutectic Scintillator. Opt. Mater 2016, 61, 134–138. DOI: 10.1016/j.optmat.2016.09.019.
  • Galleani, G.; Santagneli, S. H.; Ledemi, Y.; Messaddeq, Y.; Janka, O.; Pottgen, R.; Eckert, H. Ultraviolet Upconversion Luminescence in a Highly Transparent Triply-Doped Gd 3+ –Tm 3+ –Yb 3+ Fluoride–Phosphate Glasses. J. Phys. Chem. C 2018, 122, 2275–2284. DOI: 10.1021/acs.jpcc.7b09562.
  • Singh, V.; Singh, N.; Pathak, M. S.; Watanabe, S.; Gundu Rao, T. K.; Singh, P. K.; Dubey, V. UV Emission from Gd3+ Ions in LaAl11O18 Phosphors. Optik 2018, 157, 1391–1396. DOI: 10.1016/j.ijleo.2017.12.034.
  • Schmidt, S. F. M.; Koo, C.; Mereacre, V.; Park, J.; Heermann, D. W.; Kataev, V.; Anson, C. E.; Prodius, D.; Novitchi, G.; Klingeler, R.; Powell, A. K. A Three-Pronged Attack to Investigate the Electronic Structure of a Family of Ferromagnetic Fe4Ln2 Cyclic Coordination Clusters: A Combined Magnetic Susceptibility, High-Field/High-Frequency Electron Paramagnetic Resonance, and 57Fe Mössbauer Study. Inorg. Chem. 2017, 56, 4796–4806. DOI: 10.1021/acs.inorgchem.6b02682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.