93
Views
1
CrossRef citations to date
0
Altmetric
Articles

Enhanced photocatalytic performance of nitrogen-modified titanium dioxide

, , , , &
Pages 514-522 | Received 14 Feb 2020, Accepted 07 Jun 2020, Published online: 28 Jul 2020

References

  • Huang, Y.; Ho, S. S. H.; Lu, Y.; Niu, R.; Xu, L.; Cao, J.; Lee, S. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules 2016, 21, 56. DOI: 10.3390/molecules21010056.
  • Lin, Y.; Li, D.; Hu, J.; Xiao, G.; Wang, J.; Li, W.; Fu, X. Highly Efficient Photocatalytic Degradation of Organic Pollutants by PANI-Modified TiO2 Composite. J. Phys. Chem. C 2012, 116, 5764–5772. DOI: 10.1021/jp211222w.
  • Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. DOI: 10.1021/cr00033a004.
  • Nosaka, Y.; Daimon, T.; Nosaka, A. Y.; Murakami, Y. Singlet Oxygen Formation in Photocatalytic TiO2 Aqueous Suspension. Phys. Chem. Chem. Phys. 2004, 6, 2917. DOI: 10.1039/b405084c.
  • Nosaka, Y.; Komori, S.; Yawata, K.; Hirakawa, T.; Nosaka, A. Y. Photocatalytic? OH Radical Formation in TiO2 Aqueous Suspension Studied by Several Detection Methods. Phys. Chem. Chem. Phys. 2003, 5, 4731–4735. DOI: 10.1039/B307433A.
  • Jańczyk, A.; Krakowska, E.; Stochel, G.; Macyk, W. Singlet Oxygen Photogeneration at Surface Modified Titanium Dioxide. J. Am. Chem. Soc. 2006, 128, 15574–15575. DOI: 10.1021/ja065970m.
  • Nosaka, Y.; Nakamura, M.; Hirakawa, T. Behavior of Superoxide Radicals Formed on TiO2 Powder Photocatalysts Studied by a Chemiluminescent Probe Method. Phys. Chem. Chem. Phys. 2002, 4, 1088–1092. DOI: 10.1039/b108441k.
  • Nosaka, A. Y.; Kojima, E.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y. Photoinduced Changes of Adsorbed Water on a TiO2 Photocatalytic Film as Studied by 1 H NMR Spectroscopy. J. Phys. Chem. B 2003, 107, 12042–12044. DOI: 10.1021/jp035526v.
  • Radetic, M. Functionalization of Textile Materials with TiO2 Nanoparticles. J. Photochem. Photobiol. C: Photochem. Rev. 2013, 16, 62–76.
  • Ahmed, S.; Rasul, M. G.; Martens, W. N.; Brown, R.; Hashib, M. A. Heterogeneous Photocatalytic Degradation of Phenols in Wastewater: A Review on Current Status and Developments. Desalination 2010, 261, 3–18. DOI: 10.1016/j.desal.2010.04.062.
  • Batzill, M.; Morales, E. H.; Diebold, U. Influence of Nitrogen Doping on the Defect Formation and Surface Properties of TiO2 Rutile and Anatase. Phys. Rev. Lett. 2006, 96, 026103. DOI: 10.1103/PhysRevLett.96.026103.
  • Serpone, N. J. Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of TitaniumDioxide in Second-Generation Photocatalysts. J. Phys. Chem. B 2006, 110, 24287–24293. DOI: 10.1021/jp065659r.
  • Ikeda, S.; Sugiyama, N.; Pal, B.; Marcí, G.; Palmisano, L.; Noguchi, H.; Uosaki, K.; Ohtani, B. Photocatalytic Activity of Transition-Metal-Loaded Titanium(IV) Oxide Powders Suspended in Aqueous Solutions: Correlation with Electron-Hole Recombination Kinetics. Phys. Chem. Chem. Phys. 2001, 3, 267–273. DOI: 10.1039/b008028o.
  • Shkrob, I. A.; Sauer, M. C. Jr. Hole Scavenging and Photo-Stimulated Recombination of Electron-Hole Pairs in Aqueous TiO2 Nanoparticles. J. Phys. Chem. B 2004, 108, 12497–12511. DOI: 10.1021/jp047736t.
  • Fujishima, A.; Rao, T. N.; Tryk, D. A. TiO2 Photocatalysts and Diamond Electrodes. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.
  • Cheung, S. H.; Nachimuthu, P.; Joly, A. G.; Engelhard, M. H.; Bowman, M. K.; Chambers, S. A.; Chambers, N. Incorporation and Electronic Structure in N-Doped TiO2 (110) Rutile. Surf. Sci. 2007, 601, 1754–1762. DOI: 10.1016/j.susc.2007.01.051.
  • Asahi, R.; Morikawa, T.; Ohwaki, T.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. DOI: 10.1126/science.1061051.
  • Asahi, R.; Morikawa, T. Nitrogen Complex Species and Its Chemical Nature in TiO2 for Visible-Light Sensitized Photocatalysis. Chem. Phys. 2007, 339, 57–63. DOI: 10.1016/j.chemphys.2007.07.041.
  • Tavares, C. J.; Marques, S. M.; Viseu, T.; Teixeira, V.; Carneiro, J. O.; Alves, E.; Barradas, N. P.; Munnik, F.; Girardeau, T.; Rivière, J. P. Enhancement in the Photocatalytic Nature of Nitrogen-Doped PVD-Grown Titanium Dioxide Thin Films. J. Appl. Phys. 2009, 106,113535.
  • Rengifo-Herrera, J. A.; Pierzchała, K.; Sienkiewicz, A.; Forró, L.; Kiwi, J.; Moser, J.; Pulgarin, C. Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-Co Doped TiO2 Having Different Surface-to-Volume Ratios. J. Phys. Chem. C 2010, 114, 2717–2723. DOI: 10.1021/jp910486f.
  • Khan, M.; Xu, J.; Chen, N.; Cao, W. First Principle Calculations of the Electronic and Optical Properties of Pure and (Mo, N) Co-Doped Anatase TiO2. J. Alloys. Compd. 2012, 513, 539–545. DOI: 10.1016/j.jallcom.2011.11.002.
  • Rahman, M. M.; Alfonso, V. G.; Fabregat-Santiago, F.; Bisquert, J.; Asiri, A. M.; Alshehri, A. A.; Albar, H. A. Hydrazine Sensors Development Based on a Glassy Carbon Electrode Modified with a Nanostructured TiO2 Films by Electrochemical Approach. Microchim. Acta 2017, 184, 2123–2129. DOI: 10.1007/s00604-017-2228-x.
  • Qiu, L. F.; Zhang, H. Y.; Wang, W. G.; Chen, Y. M.; Wang, R. Effects of Hydrazine Hydrate Treatment on the Performance of Reduced Graphene Oxide Film as Counter Electrode in Dye-Sensitized Solar Cells. Appl. Surf. Sci. 2014, 319, 339–343. DOI: 10.1016/j.apsusc.2014.07.133.
  • Tian, G. H.; Fu, H. G.; Jing, L. Q.; Xin, B. F.; Pan, K. Preparation and Characterization of Stable Biphase TiO2 Photocatalyst with High Crystallinity, Large Surface Area, and Enhanced Photoactivity. J. Phys. Chem. C 2008, 112, 3083–3089. DOI: 10.1021/jp710283p.
  • Sathish, M.; Viswanathan, B.; Viswanath, R. P.; Gopinath, C. S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst (Article). Chem. Mater. 2005, 17, 6349–6353. DOI: 10.1021/cm052047v.
  • Li, H. X.; Li, J. X.; Huo, Y. I. Highly Active TiO2N Photocatalysts Prepared by Treating TiO2 Precursors in NH3/Ethanol Fluid under Supercritical Conditions. J. Phys. Chem. B 2006, 110, 1559–1565. DOI: 10.1021/jp055830j.
  • Li, S. F.; Ye, G. L.; Chen, G. Q. Low-Temperature Preparation and Characterization of Nanocrystalline Anatase TiO2. J. Phys. Chem. C 2009, 113, 4031–4037. DOI: 10.1021/jp8076936.
  • Xu, X.; Li, X.; Lin, P.; Chen, T.; Yuan, R.; Ding, Z.; Wu, L.; Wang, X.; Li, Z. A General Templated Method to Homogeneous and Composition-Tunable Hybrid TiO2 Nanocomposite Fibers. Chem. Commun. (Camb.) 2011, 47, 2538–2540. DOI: 10.1039/c0cc03596c.
  • Putz, A.-M.; Len, A.; Ianăşi, C.; Savii, C.; Almásy, L. Ultrasonic Preparation of Mesoporous Silica Using Pyridinium Ionic Liquid. Korean J. Chem. Eng. 2016, 33, 749–754. DOI: 10.1007/s11814-016-0021-x.
  • Lynch, J.; Giannini, C.; Cooper, J. K.; Loiudice, A.; Sharp, I. D.; Buonsanti, R. Substitutional or Interstitial Site-Selective Nitrogen Doping in TiO2 Nanostructures. J. Phys. Chem. C 2015, 119, 7443–7452. DOI: 10.1021/jp512775s.
  • Zeng, L.; Lu, Z.; Li, M.; Yang, J.; Song, W.; Zeng, D.; Xie, C. A Modular Calcination Method to Prepare Modified N-Doped TiO2 Nanoparticle with High Photocatalytic Activity. Appl. Catal. B Environ. 2016, 183, 308–316. DOI: 10.1016/j.apcatb.2015.10.048.
  • Hu, Y.; Liu, H.; Kong, X.; Guo, X. Effect of Calcination on the Visible Light Photocatalytic Activity of N-Doped TiO2 Prepared by the Sol-Gel Method. J. Nanosci. Nanotechnol. 2014, 14, 3532–3537. DOI: 10.1166/jnn.2014.8021.
  • Xu, J.; Sun, P.; Zhang, X.; Jiang, P.; Cao, W.; Chen, P.; Jin, H. Synthesis of N-Doped TiO2 with Different Nitrogen Concentrations by Mild Hydrothermal Method. Mater. Manuf. Process 2014, 29, 1162–1167. DOI: 10.1080/10426914.2014.921697.
  • Mohamed, M. A.; Salleh, W. N. W.; Jaafar, J.; Ismail, A. F.; Nor, N. A. M. Photodegradation of Phenol by N-Doped TiO2 Anatase/Rutile Nanorods Assembled Microsphere under UV and Visible Light Irradiation. Mater. Chem. Phys. 2015, 162, 113–123. DOI: 10.1016/j.matchemphys.2015.05.033.
  • Chen, X. B.; Burda, C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. J. Phys. Chem. B 2004, 108, 15446–15449. DOI: 10.1021/jp0469160.
  • Wong, M. S.; Chou, H. P.; Yang, T. S. Reactively Sputtered N-Doped Titanium Oxide Films as Visible-Light Photocatalyst. Thin Solid Films 2006, 494, 244–249. DOI: 10.1016/j.tsf.2005.08.132.
  • Li, D.; Haneda, H.; Labhsetwar, N. K.; Hishita, S.; Ohashi, N. Visible-Light-Driven Photocatalysis on Fluorine-Doped TiO2 Powders by the Creation of Surface Oxygen Vacancie. Chem. Phys. Lett. 2005, 401, 579–584. DOI: 10.1016/j.cplett.2004.11.126.
  • Cong, S.; Xu, Y. M. Enhanced Sorption and Photodegradation of Chlorophenol over Fluoride-Loaded TiO2. J. Hazard. Mater. 2011, 192, 485–489. DOI: 10.1016/j.jhazmat.2011.05.043.
  • Peng, F.; Cai, L.; Huang, L.; Yu, H.; Wang, H. Preparation of Nitrogen-Doped Titanium Dioxide with Visible-Light Photocatalytic Activity Using a Facile Hydrothermal Method. J. Phys. Chem. Solids 2008, 69, 1657–1664. DOI: 10.1016/j.jpcs.2007.12.003.
  • Xu, H.; Ouyang, S.; Liu, L.; Reunchan, P.; Umezawa, N.; Ye, J. Recent Advances in TiO2-Based Photocatalysis. J. Mater. Chem. A 2014, 2, 12642–12661. DOI: 10.1039/C4TA00941J.
  • Kalathil, S.; Khan, M. M.; Ansari, S. A.; Lee, J.; Cho, M. H. Band Gap Narrowing of Titanium Dioxide (TiO2) Nanocrystals by Electrochemically Active Biofilms and Their Visible Light Activity. Nanoscale 2013, 5, 6323–6326. DOI: 10.1039/c3nr01280h.
  • Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies. J. Mater. Chem. A 2014, 2, 637–644. DOI: 10.1039/C3TA14052K.
  • Ansari, S. A.; Khan, M. M.; Kalathil, S.; Nisar, A.; Lee, J.; Cho, M. H. Oxygen Vacancy Induced Band Gap Narrowing of ZnO Nanostructures by an Electrochemically Active Biofilm. Nanoscale 2013, 5, 9238–9246. DOI: 10.1039/c3nr02678g.
  • Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Kalathil, S.; Lee, J.; Cho, M. H. Band Gap Engineering of CeO2 Nanostructure by Electrochemically Active Biofilm for Visible Light Applications. RSC Adv. 2014, 4, 16782–16791. DOI: 10.1039/C4RA00861H.
  • Primo, A.; Corma, A.; Garcı´A, H. Titania Supported Gold Nanoparticles as Photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886–910. DOI: 10.1039/c0cp00917b.
  • Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Cho, M. H. Nitrogen-Doped Titanium Dioxide (N-Doped TiO2) for Visible Light Photocatalysis. New J. Chem. 2016, 40, 3000–3009. DOI: 10.1039/C5NJ03478G.
  • Rengifo-Herrera, J.; Pierzchała, K.; Sienkiewicz, A.; Forro, L.; Kiwi, J.; Pulgarin, C. Abatement of Organics and Escherichia coli by N, S co-Doped TiO2 under UV and Visible Light. Implications of the Formation of Singlet Oxygen (102) under Visible Light. Appl. Catal. B Environ. 2009, 88, 398–406. DOI: 10.1016/j.apcatb.2008.10.025.
  • Dong, F.; Zhao, W.; Wu, Z. B. Characterization and Photocatalytic Activities of C, N and S co-doped TiO(2) with 1D Nanostructure Prepared by the Nano-Confinement Effect. Nanotechnology 2008, 19, 365607. DOI: 10.1088/0957-4484/19/36/365607.
  • Maryline, N.; Cynthia, E.; Roland, H. Recent Progress on TiO2 Nanomaterials for Photocatalytic Applications. Chem. Sustain. Chem. 2018, 11, 3023–3047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.