145
Views
3
CrossRef citations to date
0
Altmetric
Articles

Room temperature ferromagnetism in ZnS and ZnO nanoparticles

&
Pages 590-600 | Received 15 Apr 2020, Accepted 21 Jun 2020, Published online: 03 Aug 2020

References

  • Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J. Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn 2+. J. Phys. Chem. 1996, 100, 4551–4555. DOI: 10.1021/jp952377a.
  • Pathak, C. S.; Mishra, D. D.; Agarawala, V.; Mandal, M. K. Mechanochemical Synthesis, Characterization and Optical Properties of Zinc Sulphide Nanoparticles. Indian J. Phys. 2012, 86, 777–781. DOI: 10.1007/s12648-012-0133-z.
  • Suarez, E.; Chan, P. Y.; Lingalugari, M.; Ayers, J. E.; Heller, E.; Jain, F. J. Quantum Dot Gate Three-State and Nonvolatile Memory Field-Effect Transistors Using a ZnS/ZnMgS/ZnS Heteroepitaxial Stack as a Tunnel Insulator on Silicon-on-Insulator Substrates. J. Elec. Mater. 2013, 42, 3275–3282. DOI: 10.1007/s11664-013-2724-7.
  • Dahiya, S.; Opoku, C.; Oshman, C.; Poulin-Vittrant, G.; Cayrel, F.; Tran Huu Hue, L. P.; Alquier, D.; Camara, N. Zinc Oxide Sheet Field-Effect Transistors. Appl. Phys. Lett. 2015, 107, 033105. DOI: 10.1063/1.4927270.
  • Rajabi, H. R.; Farsi, M. Effect of Transition Metal Ion Doping on the Photocatalytic Activity of ZnS Quantum Dots: Synthesis, Characterization, and Application for Dye Decolorization. J. Mol.Catal. A: Chem. 2015, 399, 53–61. DOI: 10.1016/j.molcata.2015.01.029.
  • Siddiqi, K. S.; Ur Rahman, A.; Tajuddin; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141.
  • Tiwari, A.; Dhoble, S. Stabilization of ZnS Nanoparticles by Polymeric Matrices: syntheses, Optical Properties and Recent Applications. RSC Adv. 2016, 6, 64400–64420. DOI: 10.1039/C6RA13108E.
  • Kannappan, P.; Dhanasekaran, R. Structural and Optical Characterization of ZnS Nanoparticles Synthesized by Low Temperature Solid-State Method. Inter. J. Rec. Tech. Eng 2018, 7, 4S.
  • Khalkhali, M.; Liu, Q.; Zeng, H.; Zhang, H. A Size-Dependent Structural Evolution of ZnS Nanoparticles. Sci. Rep. 2015, 5, 14267. DOI: 10.1038/srep14267.
  • Yuan-Yuan, S. H. E.; Juan, Y.; Ke-Qiang, Q. Synthesis of ZnS Nanoparticles by Solid-Liquid Chemical Reaction with ZnO and Na2S Under Ultrasonic.Transac. Nonferr. Metal. Soc 2010, 20, s211. doi: 10.1016/S1003-6326(10)60041-6
  • Alijani, H.Q.; Pourseyedi, S.; Mahani, M. T.; Khatamia, M. Green Synthesis of Zinc Sulfide (ZnS) Nanoparticles Using Stevia Rebaudiana Bertoni and Evaluation of its Cytotoxic Properties. J. Mol. Struct. 2019, 1175, 217.
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Khamlich, S.; Maaza, M. Sageretia Thea (Osbeck.) Mediated Synthesis of Zinc Oxide Nanoparticles and Its Biological Applications. Nanomed. (Lond) 2017, 12, 1767–1789. DOI: 10.2217/nnm-2017-0124.
  • Karthik, S.; Siva, P.; Balu, K. S.; Suriyaprabha, R.; Rajendran, V.; Maaza, M. Acalypha Indica– Mediated Green Synthesis of ZnO Nanostructures under Differential Thermal Treatment: Effect on Textile Coating, Hydrophobicity, UV Resistance, and Antibacterial Activity. Adv. Powder. Technol. 2017, 28, 3184–3194. DOI: 10.1016/j.apt.2017.09.033.
  • Sone, B. T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single-Phase α-Cr 2 O 3 Nanoparticles’ Green Synthesis Using Callistemon Viminalis ’ Red Flower Extract Green. Chem. Lett. Rev. 2016, 9, 85–90. DOI: 10.1080/17518253.2016.1151083.
  • Anand, G. T.; Renuka, D.; Ramesh, R.; Anandaraj, L.; Sundaram, S. J.; Maaza, M. Green Synthesis of ZnO Nanoparticle Using Prunus Dulcis (Almond Gum) for Antimicrobial and Supercapacitor Applications. Surf. Interfaces 2019, 17, 100376.
  • Pushpanathan, K.; Sathya, S.; Jay Chithra, M.; Gowthami, S.; Santhi, R. Influence of Reaction Temperature on Crystal Structure and Band Gap of ZnO Nanoparticles. Mater. Manuf. Process 2012, 27, 1334–1342. DOI: 10.1080/10426914.2012.700163.
  • Adam, R. E.; Pozina, G.; Willander, M.; Nur, O. Synthesis of ZnO Nanoparticles by co-Precipitation Method for Solar Driven Photodegradation of Congo Red Dye at Different pH. Appl. 2018, 32, 11–18. DOI: 10.1016/j.photonics.2018.08.005.
  • Mahesh, G.; Venkatachalam, M.; Saroja, M.; Balachander, M. Synthesis, Characterization of Pure ZnS Nano Particles Prepared Via Chemical Co-Precipitation Method. Inter. J. Res. App. Sci. Eng. Tech. 2017, 5, 2321.
  • Mohan, C.; Renjanadevi, B. Preparation of Zinc Oxide Nanoparticles and Its Characterization Using Scanning Electron Microscopy (SEM) and X-Ray Diffraction(XRD). Procedia Technol. 2016, 24, 761–766. DOI: 10.1016/j.protcy.2016.05.078.
  • Santhi, R.; Shanthi, C.; Sathya, M.; Pushpanathan, K. Self-Assembled Flower-like Microstructure in Zn 1-x Cd x O Nanoparticles. Trans. Nonferrous Met. Soc. China 2017, 27, 2031–2042. DOI: 10.1016/S1003-6326(17)60228-0.
  • Suganthi, N.; Pushpanathan, K. Cerium Doped ZnS Nanorods for Photocatalytic Degradation of Turquoise Blue H5G Dye. J. Inorg. Organomet. Polym. 2019, 29, 1141–1153. DOI: 10.1007/s10904-019-01077-4.
  • Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Mater. Res. Bulletin 1968, 3, 37–46. DOI: 10.1016/0025-5408(68)90023-8.
  • Gawai, U. P.; Khawal, H. A.; Bodke, M. R.; Pandey, K. K.; Deshpande, U. P.; Lalla, N. P.; Dole, B.N. A Study of Nanostructured ZnS Polymorphs by Synchrotron X-Ray Diffraction and Atomic Pair Distribution Function. RSC Adv. 2016, 6, 50479–50486. DOI: 10.1039/C6RA05653A.
  • Mohammed, A.F.; Salah, W.R. Synthesis of ZnS Quantum Dots for QDs-LED Hybrid Device with Different Cathode Materials. J. Phys: Conf. Ser. 2018, 1032, 012010. DOI: 10.1088/1742-6596/1032/1/012010.
  • Baruah, J. M.; Kalita, S.; Narayan, J. Green Chemistry Synthesis of Biocompatible ZnS Quantum Dots (QDs): Their Application as Potential Thin Films and Antibacterial Agent. Int. Nano Lett. 2019, 9, 149–159. DOI: 10.1007/s40089-019-0270-x.
  • Bodo, B.; Singha, R. Structural and Optical Properties of ZnS Quantum Dots Synthesized by CBD Method. Int. J. Sci. Res. 2016, 6, 461.
  • Vishwakarma, K.; Vishwakarma, O. P.; Pandey, S. K.; Ramrakhiani, M. Synthesis and Photoluminescence Studies on Nanocrystalline Content ZnS Film. Inter. J. Pure App. Phys. 2010, 6, 143.
  • Gawai, U. P.; Dole, B. N. Local Structural Studies on Co Doped ZnS Nanowires by Synchrotron X-Ray Atomic Pair Distribution Function and micro-Raman Shift. RSC Adv. 2017, 7, 37402–37411. DOI: 10.1039/C7RA02668D.
  • Iranmanesh, P.; Saeednia, S.; Nourzpoor, M. Characterization of ZnS Nanoparticles Synthesized by co-Precipitation Method. Chinese Phys. B 2015, 24, 046104. DOI: 10.1088/1674-1056/24/4/046104.
  • Bashir, A. K. H.; Razanamahandry, L. C.; Nwanya, A. C.; Kaviyarasu, K.; Saban, W.; Mohamed, H. E. A.; Ntwampe, S. K. O.; Ezema, F. I.; Maaza, M. Biosynthesis of NiO Nanoparticles for Photodegradation of Free Cyanide Solutions under Ultraviolet Light. J. Phys. Chem. Solids 2019, 134, 133–140. DOI: 10.1016/j.jpcs.2019.05.048.
  • Gawai, U. P.; Deshpande, U. P.; Dole, B. N. A Study on the Synthesis, Longitudinal Optical Phonon–Plasmon Coupling and Electronic Structure of Al Doped ZnS Nanorods. RSC Adv. 2017, 7, 12382–12390. DOI: 10.1039/C6RA28180J.
  • Sowri Babu, K.; Ramachandra Reddy, A.; Sujatha, C. H.; Venugopal Reddy, K.; Mallika, A. N. Synthesis and Optical Characterization of Porous ZnO. J. Adv. Ceram. 2013, 2, 260–265. DOI: 10.1007/s40145-013-0069-6.
  • Wang, F. Z.; He, H. P.; Ye, Z. Z.; Zhu, L. P. Photoluminescence Properties of Quasialigned ZnCdO Nanorods. J. Appl. Phys. 2005, 98, 084301. DOI: 10.1063/1.2089164.
  • Khawal, H. A.; Gawai, U. P.; Asokan, K.; Dole, B. N. Modified Structural, Surface Morphological and Optical Studies of Li 3+ Swift Heavy Ion Irradiation on Zinc Oxide Nanoparticles. RSC Adv. 2016, 6, 49068–49075. DOI: 10.1039/C6RA04803J.
  • Ghosh, M.; Raychaudhuri, A. K. Structural and Optical Properties of Zn1 − xMgxO Nanocrystals Obtained by Low Temperature Method. J. Appl. Phys. 2006, 100, 034315. DOI: 10.1063/1.2227708.
  • Kannadasan, N.; Shanmugam, N.; Cholan, S.; Sathishkumar, K.; Viruthagiri, G.; Poonguzhali, R. Optical and Electrochemical Characteristics of Pb Ions Doped ZnO Nanocrystals. Current. Appl. Phys 2014, 14, 1760–1766. DOI: 10.1016/j.cap.2014.10.006.
  • Bhatti, H. S.; Kumar, D.; Singh, K.; Gupta, A.; Sharma, R. Nanostructures of Lead Doped Zinc Oxide: Synthesis and Characterization. Asian J. Chem. 2006, 18, 3301.
  • Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Maaza, M. Physical Properties, Biological Applications and Biocompatibility Studies on Biosynthesized Single Phase Cobalt Oxide (Co3O4) Nanoparticles via Sageretia Thea (Osbeck.). Arab. J. Chem. 2020, 13, 606–619. DOI: 10.1016/j.arabjc.2017.07.004.
  • Diallo, A.; Doyle, T. B.; Mothudi, B. M.; Manikandan, E.; Rajendran, V.; Maaza, M. Magnetic Behavior of Biosynthesized Co 3 O 4 Nanoparticles. J. Magn. Magn. Mater. 2017, 424, 251–255. DOI: 10.1016/j.jmmm.2016.10.063.
  • Bashir, A. K. H.; Mayedwa, N.; Kaviyarasu, K.; Razanamahandry, L. C.; Matinise, N.; Bharuth-Ram, K.; Tchokonté, M. B. T.; Ezema, F. I.; Maaza, M. Investigation of Electrochemical Performance of the Biosynthesized α-Fe2O3 Nanorods. Surf. Interfaces 2019, 17, 100345. DOI: 10.1016/j.surfin.2019.100345.
  • Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C. N. R. Ferromagnetism as a Universal Feature of Nanoparticles of the Otherwise Nonmagnetic Oxides. Phys. Rev.B 2006, 74, 161306.
  • Norberg, N. S.; Gamelin, D. R. Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals. J. Phys. Chem. B. 2005, 109, 20810–20816. DOI: 10.1021/jp0535285.
  • Zhang, X.; Zhang, W.; Zhang, X.; Xu, X.; Meng, F.; Tang, C. C. Defects Induced Room Temperature Ferromagnetism in ZnO Thin Films. Adv. Conden. Mat. Phys. 2014, 2014, 1–6.
  • Phan, T. L.; Zhang, Y. D.; Yang, D. S.; Nghia, N. X.; Thanh, T. D.; Yu, S. C. Defect-Induced Ferromagnetism in ZnO Nanoparticles Prepared by Mechanical Milling. Appl. Phys. Lett. 2013, 102, 072408. DOI: 10.1063/1.4793428.
  • Zhang, X.; Zhang, W.; Zhang, X.; Xu, X.; Meng, F.; Tang, C. C. Defects Induced Room Temperature Ferromagnetism in ZnO Thin Films. Adv. Cond. Matter. Phys. 2014, 2014, 1–6. DOI: 10.1155/2014/806327.
  • Lide, D. R. CRC Handbook of Chemistry and Physics, CRC Press: Boca Raton, FL, 2002, 4, 146.
  • Zhao, W.; Wei, Z.; Zhang, L.; Wu, X.; Wang, X.; Jiang, J. Room Temperature Ferromagnetic and Optical Properties of Chrome Doped ZnS Nanorods Prepared by Hydrothermal Method. J. Nanomater 2017, Article ID 9378349.
  • Patel, P. C.; Ghosh, S.; Srivastava, P. C. Effect of Impurity Concentration on Optical and Magnetic Properties in ZnS:Cu Nanoparticles. Phys. E: Low-Dimens. 2017, 93, 148–152. DOI: 10.1016/j.physe.2017.06.009.
  • Khamlich, S.; Srinivasu, V. V.; Nemraoui, O.; McCrindle, R.; Cingo, N.; Maaza, M. Electron Spin Resonance Study of α-Cr2O3 and Cr2O3·nH2O Quasi-Spherical Nanoparticles. Nanosci. Nanotechnol. Lett. 2011, 3, 550–555. DOI: 10.1166/nnl.2011.1217.
  • Maaza, M.; Ngom, B. D.; Achouri, M.; Manikandan, K. Functional Nanostructured Oxides. Vacuum 2015, 114, 172–187. DOI: 10.1016/j.vacuum.2014.12.023.
  • Djaja, N. F.; Saleh, R. Characteristics and Photocatalytics Activities of Ce-Doped ZnO Nanoparticles. MSA. 2013, 04, 145–152. DOI: 10.4236/msa.2013.42017.
  • Hausmann, A.; Schallenberger, B. Interstitial Oxygen in Zinc Oxide Single Crystals. Z. Physik. B. 1978, 31, 269–273. DOI: 10.1007/BF01352351.
  • Liqiang, J.; Yuan, F.; Hou, H.; Xin, B.; Cai, W..; Fu, H.; Relationships of Surface Oygen Vacancies with Photoluminescence and Photocatalytic Performance of ZnO Nanoparticles. Sci. China Ser.B. 2005, 48, 25.
  • Karmakar, D.; Mandal, S. K.; Kadam, R. M.; Paulose, P. L.; Rajarajan, A. K.; Nath, T. K.; Das, A. K.; Dasgupta, I.; Das, G. P. Ferromagnetism in Fe-Doped ZnO Nanocrystals: Experiment and Theory. Phys. Rev. B. 2007, 75, 144404. DOI: 10.1103/PhysRevB.75.144404.
  • Guruvammal, D.; Selvaraj, S.; Meenakshi Sundar, S. Tuning Ferromagnetism in Zinc Oxide Nanoparticles by Replacing Zn2+ ions with Cr3+ ions. Eur. Phys. J. 2018, 133, 347.
  • Kana, N.; Khamlich, S.; Kana Kana, J. B.; Maaza, M. Peculiar Surface Size-Effects in NaCl Nano-Crystals. Surf. Rev. Lett. 2013, 20, 1350001. DOI: 10.1142/S0218625X13500017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.