112
Views
3
CrossRef citations to date
0
Altmetric
Articles

Fe3O4@MCM-41@Zn-Arg: as a novel, magnetically recoverable and ecofriendly nanocatalyst for the synthesis of disulfides, sulfoxides and 2,3-dihydroquinazolin‑4(1H)‑ones

&
Pages 642-655 | Received 27 Mar 2020, Accepted 12 Jul 2020, Published online: 12 Aug 2020

References

  • Zhang, Y.; Zhao, Y.; Xia, C. Basic Ionic Liquids Supported on Hydroxyapatite-Encapsulated γ-Fe2O3 Nanocrystallites: An Efficient Magnetic and Recyclable Heterogeneous Catalyst for Aqueous Knoevenagel Condensation. J. Mol. Catal. A: Chem. 2009, 306, 107–112. DOI: 10.1016/j.molcata.2009.02.032.
  • Ghorbani‐Choghamarani, A.; Tahmasbi, B.; Moradi, Z. S‐Benzylisothiourea Complex of Palladium on Magnetic Nanoparticles: A Highly Efficient and Reusable Nanocatalyst for Synthesis of Polyhydroquinolines and Suzuki Reaction. App. Organomet. Chem. 2017, 31, /3665.
  • Tamoradi, T.; Ghadermazi, M.; Ghorbani, ‐.; Choghamarani, A. Ni (II)‐Adenine Complex Coated Fe3O4 Nanoparticles as High Reusable Nanocatalyst for the Synthesis of Polyhydroquinoline Derivatives and Oxidation Reactions. App. Organomet. Chem. 2018, 32, /3974.
  • Nikoorazm, M.; Ghorbani, ‐Choghamarani, A.; Khanmoradi, M. Synthesis of 2, 3-Dihydroquinazolin-4 (1H)-Ones, Disulfides and Sulfoxides Catalyzed by a Zinc Complex Immobilized onto Functionalized Mesoporous MCM-41 as a Mild and Efficient Catalyst. J. Iran Chem. Soc. 2017, 14, 1215–1225. DOI: 10.1007/s13738-017-1072-6.
  • Rostami, A.; Atashkar, B. Chiral Oxo-Vanadium (+)-Pseudoephedrine Complex Immobilized on Magnetic Nanoparticles: A Highly Efficient and Recyclable Novel Nanocatalyst for the Chemoselective Oxidation of Sulfides to Sulfoxides Using H2O2. J. Mol. Catal. A: Chem. 2015, 398, 170–176. DOI: 10.1016/j.molcata.2014.12.010.
  • Ghorbani-Choghamarani, A.; Tahmasbi, B.; Moradi, P. Synthesis of a New Pd (0)-Complex Supported on Boehmite Nanoparticles and Study of Its Catalytic Activity for Suzuki and Heck Reactions in H 2 O or PEG. RSC Adv. 2016, 6, 43205–43216. DOI: 10.1039/C6RA02967A.
  • Nikoorazm, M.; Ghorbani-Choghamarani, A.; Mahdavi, H.; Esmaeili, S. Efficient Oxidative Coupling of Thiols and Oxidation of Sulfides Using UHP in the Presence of Ni or Cd Salen Complexes Immobilized on MCM-41 Mesoporous as Novel and Recoverable Nanocatalysts. Microporous Mesoporous Mat 2015, 211, 174–181. DOI: 10.1016/j.micromeso.2015.03.011.
  • Omidi, F.; Behbahani, M.; Kalate Bojdi, M.; Shahtaheri, S. J. Solid Phase Extraction and Trace Monitoring of Cadmium Ions in Environmental Water and Food Samples Based on Modified Magnetic Nanoporous Silica. J. Magn. Magn. Mater 2015, 395, 213–220. DOI: 10.1016/j.jmmm.2015.07.093.
  • Rostamizadeh, S.; Zekri, N. An Efficient, One-Pot Synthesis of 2-Amino-4H-Chromenes Catalyzed by (α-Fe 2 O 3)-MCM-41-Supported Dual Acidic Ionic Liquid as a Novel and Recyclable Magnetic Nanocatalyst. Res. Chem. Intermed. 2016, 42, 2329–2341. DOI: 10.1007/s11164-015-2152-9.
  • Kefayati, H.; Jirsaray Bazargard, S.; Vejdansefat, P.; Shariati, S.; Kohankar, M. Fe3O4@ MCM-41-SO3H@[HMIm][HSO4]: an Effective Magnetically Separable Nanocatalyst for the Synthesis of Novel Spiro [Benzoxanthene-Indoline] Diones. Dyes Pigm. 2016, 125, 309–315. DOI: 10.1016/j.dyepig.2015.10.034.
  • Ghorbani-Choghamarani, A.; Azadi, G. Synthesis and Characterization of Sulfamic Acid-Functionalized Nanoparticles and Study of Its Catalytic Activity for the Oxidation of Sulfides to Sulfoxides. Croat. Chem. Acta 2016, 89, 49–54. DOI: 10.5562/cca2776.
  • Abdollahi-Alibeik, M.; Rezaeipoor-Anari, A. Fe3O4@ B-MCM-41: A New Magnetically Recoverable Nanostructured Catalyst for the Synthesis of Polyhydroquinolines. J. Magn. Magn. Mater. 2016, 398, 205–214. DOI: 10.1016/j.jmmm.2015.09.048.
  • Zhang, F.; Jin, J.; Zhong, X.; Li, S.; Niu, J.; Li, R.; Ma, J. Pd Immobilized on Amine-Functionalized Magnetite Nanoparticles: A Novel and Highly Active Catalyst for Hydrogenation and Heck Reactions. Green Chem. 2011, 13, 1238–1243. DOI: 10.1039/c0gc00854k.
  • Nemati, F.; Sabaqian, S. Nano-Fe3O4 Encapsulated-Silica Particles Bearing Sulfonic Acid Groups as an Efficient, Eco-Friendly and Magnetically Recoverable Catalyst for Synthesis of Various Xanthene Derivatives under Solvent-Free Conditions. J. Saudi Chem. Soc. 2017, 21, 383–393.
  • Dreyer, D. R.; Jia, H. P.; Todd, A. D.; Geng, J.; Bielawski, C. W. Graphite Oxide: A Selective and Highly Efficient Oxidant of Thiols and Sulfides. Org. Biomol. Chem. 2011, 9, 7292–7295. DOI: 10.1039/c1ob06102j.
  • Jeon, H. B.; Kim, K. T.; Kim, S. H. Selective Oxidation of Sulfides to Sulfoxides with Cyanuric Chloride and Urea–Hydrogen Peroxide Adduct. Tetrahedron Lett. 2014, 55, 3905–3908. DOI: 10.1016/j.tetlet.2014.05.080.
  • Shaabani, A.; Rezayan, A. H. Silica Sulfuric Acid Promoted Selective Oxidation of Sulfides to Sulfoxides or Sulfones in the Presence of Aqueous H2O2. Catal. Commun. 2007, 8, 1112–1116. DOI: 10.1016/j.catcom.2006.10.033.
  • Sreedhar, B.; Radhika, P.; Neelima, B.; Hebalkar, N.; Mishra, A. K. Selective Oxidation of Sulfides with H2O2 Catalyzed by Silica–Tungstate Core–Shell Nanoparticles. Catal. Commun. 2008, 10, 39–44. DOI: 10.1016/j.catcom.2008.07.041.
  • Nasseri, M. A.; Zakerinasab, B.; Kamayestani, S. Catalytic Activity of Reusable Mn (II) Salen Complex Immobilized on Nano Silicagel in the Oxidation of Sulfides. J. Iran. Chem. Soc. 2015, 12, 1457–1463. DOI: 10.1007/s13738-015-0614-z.
  • Thurow, S.; Pereira, V. A.; Martinez, D. M.; Alves, D.; Perin, G.; Jacob, R. G.; Lenard ∼ Ao, E. J. Base-Free Oxidation of Thiols to Disulfides Using Selenium Ionic Liquid. Tetrahedron Lett. 2011, 52, 640–643. DOI: 10.1016/j.tetlet.2010.11.158.
  • Saxena, A.; Kumar, A.; Mozumdar, S. Ni-Nanoparticles: An Efficient Green Catalyst for Chemo-Selective Oxidative Coupling of Thiols. J. Mole. Catal. A: Chem. 2007, 269, 35–40. DOI: 10.1016/j.molcata.2006.12.042.
  • Mahdavi, M.; Pedrood, K.; Safavi, M.; Saeedi, M.; Pordeli, M.; Ardestani, S. K.; Emami, S.; Adib, M.; Foroumadi, A.; Shafiee, A. Synthesis and Anticancer Activity of N-Substituted 2-Arylquinazolinones Bearing Trans-Stilbene Scaffold. Europ. J. medicin. Chem. 2015, 95, 492–499. DOI: 10.1016/j.ejmech.2015.03.057.
  • Kumar, A.; Tyagi, M.; Srivastava, V. K. Newer Potential Quinazolinones as Hypotensive Agents. Indian. J. Chem. 2003, 42, 2142–2145.
  • Gangwal, A. N.; Kothawade, U. R.; Galande, A. D.; Pharande, D. S.; Dhake, A. S. Synthesis of 1-Substituted-2-Chloromethyl-4-(1H)-Quinazolinones as Antimicrobial Agents. Indian J. Heterocycl. Chem. 2001, 10, 291–294.
  • Singh, T.; Srivastava, V. K.; Sharma, S.; Kumar, A. Synthesis, Insecticidal and Antimicrobial Activities of Some Heterocyclic Derivatives of Quinazolinone. Indian J. Chem. 2006, 45, 2558–2565.
  • Tyagi, R.; Goel, B.; Srivastava, V. K.; Kumar, A. Quinazolinones as Potential anti-Inflammatory Agents. Indian J. Pharm. Sci. 1998, 60, 283–286.
  • Raghu Ram, A.; Bahekar, R. H. Synthesis of Benzimidazo [1, 2-c] Quinazolines as Possible Bronchodilators. Indian J. Chem. 1999, 38, 434–439.
  • Aghajani, M.; Monadi, N. Schiff Base Complex of Mo Supported on Iron Oxide Magnetic Nanoparticles (Fe3O4) as Recoverable Nanocatalyst for the Selective Oxidation of Sulfides. J. Iran. Chem. Soc. 2017, 14, 963–975. DOI: 10.1007/s13738-017-1046-8.
  • Tabrizian, E.; Amoozadeh, A.; Rahmani, S. Sulfamic Acid-Functionalized Nano-Titanium Dioxide as an Efficient, Mild and Highly Recyclable Solid Acid Nanocatalyst for Chemoselective Oxidation of Sulfides and Thiols. RSC Adv. 2016, 6, 21854–21864. DOI: 10.1039/C5RA20507G.
  • Hussain, S.; Talukdar, D.; Bharadwaj, S. K.; Chaudhuri, M. K. VO2F (Dmpz) 2: A New Catalyst for Selective Oxidation of Organic Sulfides to Sulfoxides with H2O2. Tetrahedron Lett. 2012, 53, 6512–6515. DOI: 10.1016/j.tetlet.2012.09.067.
  • Ghashang, M.; Azizi, K.; Moulavi-Pordanjani, H.; Shaterian, H. R. Eco‐Friendly and Efficient Synthesis of 2, 3‐Dihydroquinazolin‐4 (1H)‐Ones. Chin. J. Chem. 2011, 29, 1617–1623.
  • Labade, V. B.; Shinde, P. V.; Shingare, M. S. A Facile and Rapid Access towards the Synthesis of 2, 3-Dihydroquinazolin-4 (1H)-Ones. Tetrahedron Lett. 2013, 54, 5778–5780. DOI: 10.1016/j.tetlet.2013.08.037.
  • Nikoorazm, M.; Ghorbani, F.; Ghorbani-Choghamarani, A.; Erfani, Z. Synthesis and Characterization of a Pd (0) Schiff Base Complex Anchored on Magnetic Nanoporous MCM-41 as a Novel and Recyclable Catalyst for the Suzuki and Heck Reactions under Green Conditions. Chine. J. Catal. 2017, 38, 1413–1422. DOI: 10.1016/S1872-2067(17)62865-1.
  • Ghorbani-Choghamarani, A.; Darvishnejad, Z.; Tahmasbi, B. Schiff Base Complexes of Ni, Co, Cr, Cd and Zn Supported on Magnetic Nanoparticles: As Efficient and Recyclable Catalysts for the Oxidation of Sulfides and Oxidative Coupling of Thiols. Inorg. Chim. Acta 2015, 435, 223–231. DOI: 10.1016/j.ica.2015.07.004.
  • Chen, X.; Jiang, J.; Yan, F.; Tian, S.; Li, K. A Novel Low Temperature Vapor Phase Hydrolysis Method for the Production of Nano-Structured Silica Materials Using Silicon Tetrachloride. RSC Adv. 2014, 4, 8703–8710. DOI: 10.1039/c3ra47018k.
  • Nikoorazm, M.; Ghorbani-Choghamarani, A.; Ghorbani, F.; Mahdavi, H.; Karamshahi, Z. Bidentate Salen Cu (II) Complex Functionalized on Mesoporous MCM-41 as Novel Nano Catalyst for the Oxidative Coupling of Thiols into Disulfides Using Urea Hydrogen Peroxide (UHP). J. Porous Mater. 2015, 22, 261–267. DOI: 10.1007/s10934-014-9892-6.
  • Nikoorazm, M.; Ghorbani-Choghamarani, A.; Noori, N. Oxo‐Vanadium (IV) Schiff Base Complex Supported on Modified MCM‐41: A Reusable and Efficient Catalyst for the Oxidation of Sulfides and Oxidative S–S Coupling of Thiols. Appl. Organometal. Chem. 2015, 29, 328–333. DOI: 10.1002/aoc.3295.
  • Nikoorazm, M.; Ghorbani, ‐Choghamarani, A.; Khanmoradi, M. Mmobilization of Palladium on Functionalized Nanoporous MCM-41 and Its Application in C–C Bond-Forming and Synthesis of DHQs. J. Porous Mater. 2016, 23, 761–772. DOI: 10.1007/s10934-016-0131-1.
  • Noori, N.; Nikoorazm, M.; Ghorbani-Choghamarani, A. Synthesis and Characterization of Pd (0)-SMT-MCM-41 and Its Application in the Amination of Aryl Halides and Synthesis of 2, 3-Dihydroquinazolin-4 (1H)-Ones as Efficient and Recyclable Nanostructural Catalyst. Catal. Lett. 2017, 147, 204–214. DOI: 10.1007/s10562-016-1905-4.
  • Karami, B.; Montazerozohori, M.; Habibi, M. H. Urea-Hydrogen Peroxide (UHP) Oxidation of Thiols to the Corresponding Disulfides Promoted by Maleic Anhydride as Mediator. Molecules 2005, 10, 1363–1385. DOI: 10.3390/10101385.
  • Zhang, Y.; Xia, C. G. Magnetic Hydroxyapatite-Encapsulated γ-Fe 2 O 3 Nanoparticles Functionalized with Basic Ionic Liquids for Aqueous Knoevenagel Condensation. Appl. Catal. A: Gen. 2009, 366, 141–142. DOI: 10.1016/j.apcata.2009.06.041.
  • Ghorbani-Choghamarani, A.; Hajjami, M.; Goudarziafshar, H.; Nikoorazm, M.; Mallakpour, S.; Sadeghizadeh, F.; Azadi, G. Catalytic Oxidation of Urazoles and Bis-Urazoles to Their Corresponding Triazolinediones Using Aluminium Nitrate and a Catalytic Amount of Silica Sulfuric Acid. Monatsh. Chem. 2009, 140, 607–610. DOI: 10.1007/s00706-008-0100-8.
  • Shaabani, A.; Bazgir, A.; Soleimani, K.; Salehi, P. Solvent Effects in the Oxidation of Sulfides with NaBrO3/Mg (HSO4) 2. Synth. Commun. 2003, 33, 2935–2944. DOI: 10.1081/SCC-120022465.
  • Ghorbani-Choghamarani, A.; Darvishnejad, Z.; Norouzi, M. Cu (II)–Schiff Base Complex‐Functionalized Magnetic Fe3O4 Nanoparticles: A Heterogeneous Catalyst for Various Oxidation Reactions. Appl. Organometal. Chem. 2015, 29, 707–711. DOI: 10.1002/aoc.3354.
  • Dai, D. Y.; Wang, L.; Chen, Q.; He, M. Y. Selective Oxidation of Sulfides to Sulfoxides Catalysed by Deep Eutectic Solvent with H2O2. J. Chem. Res. 2014, 38, 183–185. DOI: 10.3184/174751914X13923144871332.
  • Ghorbani-Choghamarani, A.; Moradi, P.; Tahmasbi, B. Ni-SMTU@ Boehmite: As an Efficient and Recyclable Nanocatalyst for Oxidation Reactions. RSC Adv. 2016, 6, 56458–56466. DOI: 10.1039/C6RA09950E.
  • Hajjami, M.; Tahmasbi, B. Synthesis and Characterization of Glucosulfonic Acid Supported on Fe3O4 Nanoparticles as a Novel and Magnetically Recoverable Nanocatalyst and Its Application in the Synthesis of Polyhydroquinoline and 2, 3-Dihydroquinazolin-4 (1 H)-One Derivatives. RSC Adv. 2015, 5, 59194–59203. DOI: 10.1039/C5RA08952B.
  • Ghorbani-Choghamarani, A.; Norouzi, M. Synthesis of Copper (II)-Supported Magnetic Nanoparticle and Study of Its Catalytic Activity for the Synthesis of 2, 3-Dihydroquinazolin-4 (1H)-Ones. J. Mol. Catal. A: Chem. 2014, 395, 172–179. DOI: 10.1016/j.molcata.2014.08.013.
  • Ghorbani-Choghamarani, A.; Azadi, G. Synthesis, Characterization, and Application of Fe3O4-SA-PPCA as a Novel Nanomagnetic Reusable Catalyst for the Efficient Synthesis of 2, 3-Dihydroquinazolin-4 (1 H)-Ones and Polyhydroquinolines. RSC Adv. 2015, 5, 9752–9758. DOI: 10.1039/C4RA15315D.
  • Tamoradi, T.; Mousavi, S. M.; Mohammadi, M. Praseodymium (III) Anchored on the CoFe2O4 MNPs: An Efficient Heterogeneous Magnetic Nanocatalyst for One-Pot, Multi-Component Domino Synthesis of Polyhydroquinoline and 2, 3-Dihydroquinazolin-4 (1H)-One Derivatives. New J. Chem. 2020, 44, 3012–3020.
  • Ghorbani-Choghamarani, A.; Tahmasbi, B. The First Report on the Preparation of Boehmite Silica Sulfuric Acid and Its Applications in Some Multicomponent Organic Reactions. New J. Chem. 2016, 40, 1205–1212. DOI: 10.1039/C5NJ02607E.
  • Tamoradi, T.; Ghadermazi, M.; Ghorbani-Choghamarani, A. Synthesis of Polyhydroquinoline, 2, 3-Dihydroquinazolin-4 (1H)-One, Sulfide and Sulfoxide Derivatives Catalyzed by New Copper Complex Supported on MCM-41. Catal. Lett. 2018, 148, 857–872. DOI: 10.1007/s10562-018-2311-x.
  • Ghorbani-Choghamarani, A.; Goudarziafshar, H.; Nikoorazm, M.; Yousefi, S.; Ghorbani-Choghamarani, A. Efficient Oxidation of Sulfides to the Sulfoxides Using Zirconium (IV) Chloride, Sodium Nitrite and Catalytic Amounts of Bromide Ion as a Novel Oxidizing Media. Loc. 2009, 6, 335–339. DOI: 10.2174/157017809788489882.
  • Lakouraj, M.; Tajbakhsh, M.; Tashakkorian, H. Ion Exchange Resin Catalyzed Selective Oxidation of Sulfides to Sulfoxides Using Hydrogen Peroxide. Monatsh. Chem. 2007, 138, 83–88. DOI: 10.1007/s00706-006-0563-4.
  • Karimi, B.; Selective, Z.,D. Metal-Free Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with N-Bromosuccinimide (NBS) under Neutral Buffered Reaction Conditions. J. Iran Chem. Soc. 2008, 5, 103–107.
  • Moeini, N.; Ghadermazi, M.; Ghorbani-Choghamarani, A. Synthesis of Sulfoxides and Disulfides under Classical and Ultrasonic Conditions in Presence of Recoverable Inorganic–Organic Hybrid Magnetism Nanocatalysts Fe3O4@ Tryptophan-M (M: Cu, Co and Fe), Polyhedron 2019, 170, 278–286. DOI: 10.1016/j.poly.2019.04.037.
  • Chai, P. J.; Shu, L. Y.; Xia, T. C. An Efficient and Convenient Method for Preparation of Disulfides from Thiols Using Air as Oxidant Catalyzed by Co-Salophen. Chin. Chem. Lett. 2011, 22, 1403–1406. DOI: 10.1016/j.cclet.2011.06.007.
  • Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A. A. Efficient Synthesis of Mono-and Disubstituted 2, 3-Dihydroquinazolin-4 (1H)-Ones Using KAl (SO4) 2· 12H2O as a Reusable Catalyst in Water and Ethanol. Tetrahedron Lett. 2005, 46, 6123–6126. DOI: 10.1016/j.tetlet.2005.06.157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.